
Using fuzzy temporal logic for monitoring behavior-based mobile robots

Khaled Ben Lamine and Froduald Kabanza

Dépt. de math-info

Universit́e de Sherbrooke

Sherbrooke, Qc J1K 2R1

Canada

{benlamin,kabanza}@dmi.usherb.ca

Abstract

This paper presents a model and an implementation of
a runtime environment for specifying and monitoring
properties of behavior-based robot control systems. The
proposed approach supports collecting events that are
recorded and examined at run-time. Temporal fuzzy
logic is used as a formal language for specifying behav-
iors properties and new semantics are introduced to take
into consideration environment unpredictability and un-
certainty. These ideas are developed in theSAPHIRA mo-
bile robot’s control environment, but they can also be ap-
plied to other behavior-based architectures. Experiments
with two real-world robots are used to illustrate failure
examples and the benefits of failure detection.

Keywords: mobile robots, behavior-based robotics,
temporal reasoning, uncertainty in AI.

1 Introduction

Behavior-based approaches – see for example [1] and
SAPHIRA [7]– have shown remarkable success in control-
ling robots evolving in real world environment. Briefly,
in these approaches we remove the non essential assump-
tions that could prevent from an adaptation to unantici-
pated events. Also the decision process about the action
to take in a given situation is distributed across several
simple processes. Typically, such processes, also called
behaviors, are implemented as direct mapping from local
sensors data to control actions.

Designing concurrent reactive behaviors based on lo-

cal considerations make them easy to program and debug.
However, their combination may cause unpredicted and
undesirable results. For instance, there may be places
where the desire to reach a goal destination exactly bal-
ances the urge to turn away from obstacles, yielding a
stall (null move and turn action). In other situations, the
combination of behaviors may suggest a turn in a given
situation and then a turn in the opposite direction in the
next situation, so that the robot oscillates between these
two moves. Behaviors can also fail if the context they are
designed for is no longer valid. For example, approach-
ing an object may require the object to remain visible for
a certain period of time in order to locate it.

Detecting such failures is a non trivial problem, yet
a very important one in behavioral approaches. Without
the ability to detect anomalies, a robot won’t be able to
autonomously adjust its behaviors and overcome unpre-
dicted failures. Actually we need a feedback system that
incorporates a “progress” criterion into behaviors, and fa-
cilities to monitor this criterion.

Current failure detection techniques for mobile
robots rely on heuristic monitoring of robot’s behaviors
to detect potential failures [8, 12]. By “heuristic”, we
mean that there is no well-defined semantic behind the
verification method. These methods rather rely on rules
of thumbs and handle failures in an ad-hoc fashion. While
this effectively helps in detecting some failures, it is often
difficult to analyze and understand the range of typical
failures covered by heuristic monitoring strategies.

An another problem facing real world robot’s moni-
toring systems is uncertainty coming from the complexity
of the environment itself, from noisy sensors, or from im-
precise actuators. According to [10] there is three ways to

1

cope with uncertainty.

1. Get rid of it, by carefully engineering the robot
and/or the environment;

2. Tolerate it, by writing robust programs able to op-
erate under a wide range of situations, and recover
from errors; or

3. Reason about it, by using techniques for the repre-
sentation and the manipulation of uncertain informa-
tion.

In this paper we present a framework for monitoring
behavior-based robot control systems. Along with the
third way above, we define a fuzzy temporal logic that
is used to specify desirable system behaviors. We also
provide a method for checking online the violation of
these behaviors. There is numerous advantages to our
approach including a declarative semantics for the moni-
toring knowledge and an independence of this knowledge
from the implementation details of the control system.

In order to fix a context, these ideas are developed in
theSAPHIRA [7] mobile robot’s control environment, but
they can also be applied to other behavior-based architec-
tures such as [3].

The remainder of this paper is organized as follows.
In the next section, we discuss related work. We then de-
fine our new fuzzy temporal logic. This is followed with
a description of the approach used to monitor and check
the violation of behavioral properties expressed in that
logic. Finally, we present some empirical results before
concluding.

2 Related Work

Monitoring is the process of recording event occurrences
during program execution in order to gain runtime in-
formation about the system states as well as information
about the environment in which the system evolves [11,
5]. The work of Jahanianet al. is particularly interest-
ing. Real-time conditions to be monitored and verified are
specified using a temporal logic called Real Time Logic
(RTL). This is a logic of events. Timing conditions are
specified in terms of starting time and ending time of rel-
evant events. The evaluation of these conditions is made

over a runtime trace gathered during the system execu-
tion. Another related approach was proposed by Felder
and Morzenti [2].

The approach we advocate here is in the same line
of inquiry, but is more tailored for behavior-based robots.
First of all, we use a fuzzy temporal logic to account for
fuzzy behaviors in theSAPHIRA mobile robot architec-
ture and noisy, uncertain information. On a more techni-
cal level, we use a state-based logic. Basic propositions
in our logic relates to states rather than to events. Accord-
ingly, our approach for checking conditions specified in
that logic is different. We use an incremental method that
can do the verificationon the fly. This method is inspired
from [6], where a similar approach was used to gener-
ate plans by verifying temporal logic goals over simulated
traces of predicted execution sequences.

Apart from validating the control system, the ulti-
mate goal of monitoring, in the case of behavior-based
control, is to make the system more adaptive. In this set-
ting, the monitoring system gives feedback to the robot’s
decision making processes which can then adapt their
control strategies. However, the integration of monitoring
and decision making is beyond the scope of the present
paper and hence will not be discussed.

3 Temporal properties specification

Linear temporal logic formulas have been used success-
fully for specifying properties for the purpose of verifying
concurrent systems [4]. Formulas in such logics are inter-
preted over models that are infinite sequences of states
and temporal modalities are used to assert properties of
these sequences.

In our case, we also use linear temporal logic formu-
las, but with a fuzzy semantics. The truth of a proposition
is a real value between 0 and 1. For example, the truth
value of the propositionV isibleBall will be a real num-
ber between0 and1 reflecting our incapacity to draw clear
boundaries between thruthness and falseness of a propo-
sition. This allows us to include fuzzy statements such as
“slightly visible” or “completely visible”. On the other
hand, it is not wise to conclude that the ball is visible
from just one snapshot because of noise inputs. Rather,
we should observe the ball on a whole period and con-
clude that it is visible based on snapshots taken during
that period. To allow this, our propositions are evaluated

2

over segments of state sequences rather than over a single
state. The size of the segment is determined empirically.

3.1 Syntax

Our fuzzy temporal formulas are constructed from an enu-
merable collection of propositions; Boolean connectives
∧ (and),¬ (not), and the temporal connectives© (next),
2 (always),3 (eventually), andU (until). The formulas
formation rules are:

• every fuzzy proposition p is a formula; in particular,
we have built-in static propositions corresponding to
real values in[0, 1]; for the sake of clarity, the fuzzy
propositions corresponding to a real-valuex is sim-
ply notedx; hence0.5 and0.65 are fuzzy proposi-
tions;

• if f1 andf2 are formulas, then so are¬f1, f1 ∧ f2,
© f1, 2 f1, 3 f1, andf1 U f2.

3.2 Semantics

Formulas are interpreted over models of the form〈w, π〉,
where:

• w is an infinite sequence of worlds statew0, w1, . . .;

• π is a real-valued function that evaluates proposi-
tions in states. For a given propositionp and a state
wi, π(p, wi) returns the truth value in[0, 1] of propo-
sitionp in the world statewi. Thus, the truth value of
a proposition usually depends on a state. But built-
in static fuzzy propositions always have the same
value regardless of the state. Thus,π(0.5, wi) always
yields0.5.

For a statewi in a modelM = 〈w, π〉, propositionp
or formulasf1 andf2:

• π(¬p, wi) = 1− π(p, wi)

• π(f1 ∧ f2, wi) = π(f1, wi)⊗π(f2, wi)

• π(f1 ∨ f2, wi) = π(f1, wi)⊕π(f2, wi)

• π(© f, wi) = π(f, wi+1)

• π(2 f, wi) = π(f, wi)⊗π(2 f, wi+1))

• π(f1 U f2, wi) =
π(f2, wi)⊕((π(f1, wi)⊗π(f1 U f2, wi+1))

wherex⊗ y is the minimum ofx andy, that is, the
fuzzy counter-part ofand binary logic connective;x⊕ y
is the maximum ofx andy, that is, the fuzzy counter-part
of or binary logic connective.1

The functionπ(p, wi) returns the truth value of a
propositionp at a given statewi in a runtime trace. This
truth value not only depends on the statewi, but on
a subsequence ending atwi. The length of the subse-
quence and the interpretation mechanism are implicit in
the user-defined proposition evaluation functions. Thus,
for propositions,π invokes user-defined proposition eval-
uation functions. For instance, assumep is the proposition
V isibleBall. We define a function that will evaluatep to
a value that depends on how the vision system sees the
ball on each of the latest4 states. Here, the number4 is
set empirically.

More formally, following Yager’s approach [13], we
useordered weighted average(OWA) operators to evalu-
ate the truth of propositions over histories.

Definition 1 An OWA operator of dimension n is a map-
ping F from [0, 1]n to [0, 1] associated with a wieghting
vectorW = [W1,W2, . . . ,Wn], such that

1. Wi ∈ [0, 1]

2.
∑

i Wi = 1

and

F (a1, a2, . . . , an) = W1b1 + W2b2 + . . . Wnbn

where bi is the ith largest element in the collection
a1, a2, . . . , an

Different OWA operators can be defined depending
on the weighting vector. For example[1, 0, 0 . . .] repre-
sents the max operator,[0, 0, . . . , 1] represents the min

1In general, fuzzy logic may use different definitions ofand and
or. It is generally required that⊗ be any continuous triangular norm
or t-norm and⊕ is any continuoust-conorm. The definitions we have
adopted satisfy those conditions and are among those most frequently
used.

3

operator and[1/n, 1/n, . . . , 1/n] represents the average
operator.

We associate with each proposition a specific OWA
so that the evaluation of a proposition corresponds to an
“or-anding” of the truth values over a recent state history.
Thus, we have:

π(p, wi) = F (πs(p, wi1), πs(p, wi2), . . . , πs(p, win
))

Whereπs is a real-valued function that returns the
value of a proposition based on a single world state. The
weights of the OWA and the extent of the history needed
to evaluate a proposition are defined empirically depend-
ing on the application and the properties being expressed
by propositions. Automated learning of such parameters
is also an interesting research topic [9].

Since the evaluation of a formula yields a real-valued
value, instead of true or false, we have degrees of truth-
ness or conversely, degrees of falsity. Nevertheless, as-
suming some empirical threshold value (e.g., false for val-
ues below 0.5 and true otherwise), we can talk about a
property being violated or being satisfied.

4 Examples of specifications

Our experiments are being conducted with anActivme-
dia Pioneer I mobile robot and Pioneer AT mobile robot,
both equipped with seven sonars used to perceive obsta-
cles, a Fast Track Vision system from Newton Labs used
to perceive colored object and a gripper used for grasping
objects.

The sensors and actuators suffer from noisy reading
and uncertainty. For example, variation of the light in-
tensity can affect precision in seeing colored object, and
wheel slippage can affect precision in measured travel dis-
tances. In addition, the robot is controlled over a radio
modem link which can suffer from environment distur-
bance.

One of the tasks that we have experimented consists
in searching for a red ball and bringing it to a home loca-
tion marked by green. The green location have to be lo-
calized too. We programmed this tasks, by decomposing
it into two subtasks: searching and homing. The search-
ing subtask includes searching for the red ball, approach-
ing it, and then grasping it. The homing subtask includes

searching for the home location, approaching it, and then
releasing the red ball.

In our early tests we noted some failures conditions.
For example, when searching for the red ball, the ball may
become visible only for a brief period of time in the vi-
sual field of the camera, for example because the robot’s
vision angle becomes obstructed by an obstacle. In such
a situation, the robot should not consider that it has found
the ball to begin approaching it. Another failure situation
is when the ball is in a corner the robot cannot reach it.
This may cause a stall if the robot commits to its goal
and persists in trying to grasp the ball. To capture such
failures situations, we use fuzzy temporal logic formulas
to express contextual properties under which robotics be-
haviors must operate. Here are some examples:

1. Context failure

• 2(ApproachingBall → V isibleBall) when
approaching the ball it must remain on the vi-
sual field of the camera

• 2(ApproachingHome → V isibleHome ∧
Ballgrasped) when approaching home it must
remain on the visual field of the camera and the
ball must be held on.

2. Goal failure

• 2(SearchingBall → 3 V isibleball) when
searching the ball it has to be visible for a pe-
riod of time to be considered found.

• 2(GettingBall → 3 Graspedball) when
grasping the ball it has to be be reached.

3. Stall failure

• ¬2(ActionSumNull ∧ ActionStopNull)
That is, a stall occurs when the summation
of the behavior suggested actions is null and
the stop behavior (used to stop the robot when
there is no action suggested) is not active.

4. Sequencing failure

• ¬2(AproachingBall U SearchingBall)
Approaching the ball should not, always,
promote searching for the ball.

4

ProgressFormula(f, wi, π)

1. casef

2. p (p a proposition): returnπ(p, wi)

3. ¬f1: ¬ ProgressFormula(f, wi, π)

4. f1 ∧ f2: ProgressFormula(f1, wi, π) ∧
ProgressFormula(f2, wi, π)

5. f1 ∨ f2: ProgressFormula(f1, wi, π) ∨
ProgressFormula(f2, wi, π)

6. © f1 : f1

7. 2 f1 : ProgressFormula(f1, wi, π) ∧ 2 f1

8. f1 U f2 : ProgressFormula(f2, wi, π) ∨
(ProgressFormula(f1, wi, π) ∧ f1 U f2)

Figure 1: Formula progression algorithm

5 Temporal Checker

Our temporal checker is an extension of theformula pro-
gression algorithmfrom [6] to handle our fuzzy seman-
tics. As in [6], a formula is verified over a sequence of
states (a runtime trace in our case) byprogressingit on
the fly over the trace. More specifically, this means that
each state is a labeled with a formula that must be evalu-
ated by each sequence starting from this state. Given any
state and its label, the label of a successor in the state his-
tory is obtained by applying the algorithm described in
Fig. 1.

The input of the formula progression algorithm is
a formulaf , a statewi, and a functionπ that evaluates
propositions in states. The functionπ invokes the OWA
operator defined for each proposition. The output is a for-
mula that, when evaluated over a sequence fromwi+1 it
has the same value as the evaluation of the input formula
over the sequencewi. This algorithm satisfies the follow-
ing theorem.

Theorem 1 Let w1, w2, . . . denote any infinite se-
quence of world states,π an evaluation func-
tion that evaluate propositions in states. Then
for any state wi and a formula f , π(f, wi) =
π(Progress formula(f, wi, π), wi+1).

The proof (omitted here due to space limitations) is

based on the observation that the algorithm is merely a
rewriting of the formula interpretation rules given in sec-
tion 3.2.

This theorem is in turn the basis of our temporal
checker. The basic process consists in progressing the
formula over the runtime trace. That way, each new
state added to the current trace obtains a formula label
that is computed by the above formula progression algo-
rithm. The theorem implicitly states that a state where
the formula is “made false” (more precisely, its value is
below an empirically set threshold) violates the tempo-
ral property expressed by the original formula. How-
ever progressing formulas over infinite sequences is not
suitable for robotic applications where some timing con-
straints can be involved. For this reason, when imple-
menting the progress algorithm formula are evaluated
only on specific context. For examples, the formula
2(ApproachingBall → V isibleBall) is effective only
when the robot is approaching the ball so that it does not
have to be evaluated in any other context. Also, we can
associate a time out to formulas. The progress algorithm
will, in this case, return false when the formula is evalu-
ated to false or when it is timed out.

5.1 Examples of Formula Progression

Assume we want to check one of the example formulas
above, namely:2(ApproachingBall → V isibleBall).
For this, let’s use the weight vector[0.0, 0.5, 0.5, 0.0]
for the OWA operator associated to the propositions
ApproachingBall andV isibleBall.

Assume the following trace (Figure 2), indicat-
ing the truth values for the two different propositions
in 90 different states of a runtime trace. With this
trace and given the formula2(ApproachingBall →
V isibleBall), i.e. when approaching a ball it must
be visible, the progress algorithm produces the formula
(1.0 ∧ 2(ApproachingBall → V isibleBall)) in all
states. Therefore, the formula is not violated bytrace1.
In the case of the second trace (trace2) V isibleBall is
false in statesS30 throughS35. The progress algorithm
returns(0.0∧2(ApproachingBall→V isibleBall)) i.e.
false, in states subsequent toS31. This means that the for-
mula is violated and a recovery strategy must be used.

In the first trace (Trace 1)V isibleBall is false in
statesS30 andS40, so the formula should be violated.
But using OWA operators for evaluatingV isibleBall

5

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

States

VisibleBall
ApproachingBall

Figure 2: Trace 1

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50 60 70 80 90

States

VisibleBall
ApproachingBall

Figure 3: Trace 2

make the value ofV isibleBall in statesS30 and S40
true. Actually, we consider the value ofV isibleball in
statesS30 andS40 as noise and ignore them. In the sec-
ond example, unlike the first trace, we consider that the
robot has lost the visual contact with the ball.

6 Empirical results

We have implemented a monitoring system (see figure 4)
to collect traces, to check for potential failures speci-
fied by temporal fuzzy logic formulas, and to notify the
SAPHIRA control program of those detected failures. The
general structure of the monitoring system consists of: (1)
a monitoring knowledge base containing models of the
expected/unexpected ideal behavior of the robot in terms
of temporal constraints; (2) a trace collector for tracking
the actual behavior of the system; (3) a failure detection
module for checking a temporal fuzzy logic formula over
the current trace to determine whether or not it violates the
formula; and (4) a failure diagnosis module that evaluates
a trace of the temporal logic verification process to deter-
mine the type of failure in a format that is meaningful to
the robot control system.

In this section we aim at evaluating our approach
in terms of failure coverage and design effort. We have

written two control programsProg1andProg2using the
SAPHIRA programming language and a control program
Prog3communicating with our monitoring system.Prog1
contains no monitoring processes and serves as a refer-
ence program with regards to the robustness of the con-
trol system itself. It also gives an idea about the envi-
ronment conditions.Prog2contains ad hoc solutions us-
ing the programming language available inSAPHIRA and
gives an idea about the complexity of writing monitoring
processes.Prog3 uses our monitoring system, including
the temporal checker, sending information and receiving
failures notifications from it. We have also written sim-
ple recovery strategies to use when failures occur. We
focused on three frequent failures: (1) the tracked ball is
lost from the visual field of the robot; (2) the ball slips
from the gripper; and (3) the ball remains for a short pe-
riod between the grippers paddles (the robot is equipped
with an infrared beam to detect the presence of an object
between the paddles of the gripper). Recovery strategies
include randomly searching for the ball when we loose
visual contact with it, and opening the gripper and going
back when the ball slips from the paddles. In addition,
when conducting our tests some of the above failures were
intentionally provoked.

Table 1 shows the results of our tests. We conducted
30 runs of each program and noted the number of failure
notifications (recovery) and the number of run failures.
The number of run failures inProg1 is high in part due to
the fact that there is no monitoring facilities and because
some failures are intentionally introduced, like taking out
the ball from the gripper or hiding it.Prog2 andProg3
performed better thanProg1andProg3was the best.

Robot Control
system

(Saphira)

Trace Collector M
onitoring know

ledge
(Form

ulas, tim
eouts ...)

Failure

(formula ckecking)
detection

diagnosis
Failure

Figure 4: The general structure of the monitoring system

Prog3 reported less run failures and less failure no-
tifications thanProg2. At first glance it seems surprising

6

Prog 1 Prog 2 Prog 3
notifications 0 25 15
failures 20 11 6
runs 30 30 30
design, testing easy difficult medium

Table 1: Empirical results

that detecting less failures leads to a more robust program.
However,Prog2monitoring processes are in fact too sen-
sitive to failures and treat noisy sensor readings as fail-
ure conditions. As a result a frequent switching between
recovery and control processes is observed. Using our
failure detection approachProg3seems more committed
to its current goal a and less prone to noise. The fact is
that our failure detection algorithm is based on a state his-
tory while Prog2 failure detection algorithm is based on
a snapshot of the current situation to decide that we have
a failure. Using OWA operators to evaluate propositions
noisy readings are ignored. For example an object is con-
sidered visually lost only if it is not detected over a certain
period of time. But it can be visible in some cycles of the
period considered.

7 Conclusion

Monitoring behavior-based mobile robots evolving in un-
certain and noisy environment is a very challenging prob-
lem. Since monitoring rely on collecting runtime infor-
mation of the system and the environment, any moni-
toring solution have to deal with noisy sensor readings
and uncertainty. In this paper we presented a formal
tool for monitoring behavior based robot control systems
while taking into account uncertainty and noisy informa-
tion. Our approach have several advantages. First, it pro-
vides a declarative semantics for expressing monitoring
knowledge. Second it hides implementation details of the
monitoring knowledge, and third it provide a high degree
of modularity (new monitoring knowledge can be added
without affecting the control system). Results showed the
effectiveness of our approach for dealing with noise and
uncertainty. However, this effectiveness holds to the fine
tuning of the OWA operators weight vector. Also, we
have assumed that the monitoring knowledge will come
from the user just like the other forms of knowledge for
controlling the robot. So an important area for future in-
vestigation will be to employ learning and reasoning tech-
niques to determine suitable OWA operators given the na-
ture of the environment or to derive monitoring knowl-
edge from the basic behaviors used to control the robot.

These techniques can be integrated in the trace collector
and the diagnosis component of the system we described
in figure 4.

References

[1] R. C. Arkin. Behavior-Based Robotics. MIT press, 1998.

[2] M. Felder and A. Morzenti. Validating real-time systems
by history checking trio specifications.ACM Transactions
on Software Engineering and Methodology, 3(4), October
1994.

[3] E. Gat. On three-layer architectures. InArtificial Intel-
ligence and Mobile Robots, volume 2, pages 1622–1627,
1994.

[4] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple
on-the-fly automatic verification of linear temporal logic.
In Proc. 15th Work. Protocol Specification, Testing, and
Verification, Warsaw, June 1995. North-Holland.

[5] F. Jahanian, R. Rajkumar, and Sitaram. C. V. Raju. Run-
time monitoring of timing constraints in distributed real-
time systems.Real-Time Systems Journal, 7(3):247–273,
1994.

[6] F. Kabanza, M. Barbeau, and R. St-Denis. Planning
control rules for reactive agents.Artificial Intelligence,
95(1):67–113, 1997.

[7] K. Konolige, K.L. Myers, E.H. Ruspini, and A. Saffiotti.
The Saphira architecture: A design for autonomy.Jour-
nal of Experimental and Theoretical Artificial Intelligence,
9(1):215–235, 1997.

[8] F.G. Pin and S.R. Bender. Adding memory processing be-
haviors to the fuzzy Behaviorist-based navigation of mo-
bile robots. InISRAM’96 Sixth International Symposium
on Robotics and Manufacturing, Montpelier, France, May
27-30 1996.

[9] Ronald R.Yager and Dimitar Filev. On the issue of ob-
taining owa operator weights.Fuzzy Sets and Systems,
94:157–169, 1998.

[10] A. Saffiotti. Handling uncertainty in control of au-
tonomous robots. InApplications of Uncertainty For-
malisms in Information, pages 198–224. Lecture Notes in
Computer Science, Vol. 1455, 1998.

[11] Jeffrey J. P. Tsai and Steve J. H. Yang.Monitoring and
Debugging of Distributed Real-Time Systems. IEEE Com-
puter Society Press, 1995.

[12] W.L. Xu. A virtual target approach for resolving the
limit cycle problem in navigation of a fuzzy behaviour-
based moblile robot.Robotics and Autonomous Systems,
30:315–324, 2000.

[13] Ronald R. Yager. On ordered weighted averaging
aggregation operators in multicriteria decisionmaking.
IEEE Transactions on Systems, Man, And Cybernetics,
18(1):183–190, 1988.

7

