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Abstract— Board games are often taken as examples to teach
decision-making algorithms in artificial intelligence (AI). These
algorithms are generally presented with a strong focus on
winning the game. Unfortunately, a few important aspects, such
as the gaming experience of human players, are often missing
from the equation. This paper presents a simple board game
we use in an introductory course in AI to initiate students to
the gaming experience issue. The Snakes and Ladders game
has been modified to provide different levels of challenges for
students. The game with such modifications offers theoretical,
algorithmic and programming challenges. One of the most
complex is the generation of an optimal policy to provide a
fair challenge to an opponent. A solution based on Markov
Decision Processes (MDPs) is presented. This approach relies
on a simple model of the opponent’s playing behaviour.

I. INTRODUCTION

It is well known that computer science students are often
avid video game players. Thus, using games in computer
sciences classes is a good teaching strategy to get students
interested. It is not a surprise that most textbooks [1], [2] in
the field of artificial intelligence (AI) use games to introduce
formal algorithms. Simple board games such as the n-puzzle,
tic-tac-toe, Gomoku and chess are often used in AI courses
because they are usually well-known by most people. These
games also offer the advantage of being easy to implement
since they generally have a discrete representation as well as
simple rules.

In classical AI courses, the main focus of homework
assignments usually is the design of an AI that optimizes its
decisions to win the game. Unfortunately, a few important
aspects are disregarded—one of them is user experience.

Today, an important trend in the design of video games
is to provide a fair challenge to human players. Properly
balancing the difficulty level of an intelligent adversary in
a video game can prove to be quite a laborious task. The
agent must be able to provide an interesting challenge to the
human player in order not to bore him. On the other hand, an
opponent that exhibits an optimal behaviour will result in a
player that will either be discouraged or accuse his opponent
of cheating. Different strategies can be adopted to create an
AI with various difficulty levels.

A rubber band (i.e., cheating) AI [3] describes an artificial
player that is given an advantage over human players through
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various means. For example, artificial players may have a
perfect visibility of the state of the world, obtain better
items, or attain greater speeds. Rubber banding is especially
common in racing video games (for instance, the Mario Kart
series [4]); human players are led to believe they are winning
the race, only to see their opponents get speed boosts for
dragging behind too much, and zoom right past them at the
last moment. A human player experiencing such a situation
is likely to be frustrated and stop playing the game.

In this paper, we show how it is possible to use a Markov
Decision Process (MDP) [5] solving algorithm to compute
a policy for an autonomous intelligent agent that adjusts its
difficulty level according to its opponent’s skill level. The
resulting policy will ensure that the artificial opponent plays
suboptimally against an inexperienced player, but also plays
optimally when its adversary is leading the game. This allows
the opponent to offer a challenge to the human player while
not exhibiting a cheating behaviour.

A modified version of the well-known Snakes and Ladders
board game is used as a testbed and as the game framework
for a homework assignment in our introductory AI course
for undergraduate students. As opposed to the usual rules of
the game where chance totally determines the final state of
the game, our modified game allows the players to decide
of an action to take at each turn. Three actions are allowed:
advancing by one square on the board, throwing one die,
or throwing two dice. Since each action has a different
probabilistic outcome, the player has to carefully think about
which action is the best on each square of the board. The
board configuration, i.e., the snakes and ladders, strongly
influences the actions to be taken. Since this game is non-
deterministic and involves a sequence of decision-making,
the Markov Decision Process (MDP) formalism comes as a
natural approach to compute optimal policies.

Although the game seems trivial at first glance, it never-
theless offers different types of interesting challenges. The
simplest problem in Snakes and Ladders is to decide which
actions to take in order to reach the end of the board as
quickly as possible. This problem is easily solved using
an MDP to compute an optimal policy which assigns an
action to each board position. However, in a multiplayer
context, adopting this policy is not always the best strategy
for winning the game. In many situations, players may have
to attempt desperate or riskier moves in order to have a
chance to win the game. Consequently, the position of the
opponent has to be considered to act optimally. The MDP
framework can be used to solve this problem optimally.

A more interesting issue arises when trying to provide a



fair challenge to the adversary. One possible solution is to
model the gaming experience of the opponent. Instead of
generating a policy that exclusively optimizes the winning
probability, the MDP could generate a policy which opti-
mizes the opponent’s gaming experience.

There are also other types of issues. For instance, very
large virtual boards can be quite hard to solve optimally.
Fortunately, many strategies can be used to speed up MDP
solving: heuristics to initialize the values of states, an im-
proved value iteration algorithm like Real-Time Dynamic
Programming (RTDP) [6] or Labeled RTDP (LRTDP) [7],
and other ad hoc programming tricks.

The rest of this paper is organized as follows. Section II
introduces the MDP framework. Sections III and IV describe,
respectively, how to compute an optimal policy to win the
game and an optimal policy to optimize user experience. A
conclusion follows in Section V.

II. BACKGROUND

Markov Decision Processes (MDPs) are a well-established
mathematical framework for solving sequential decision
problems with probabilities [5]. They have been adopted in a
variety of fields, such as economic sciences, operational re-
search and artificial intelligence. An MDP models a decision-
making system where an action has to be taken in each
state. Each action may have different probabilistic outcomes
which change the system’s state. The goal of an MDP solving
algorithm is to find a policy that dictates the best action to
take in each state. There exist two main formulations for
MPDs: one strives to minimize costs and the other aims to
maximize rewards.

A. Minimizing Costs

Some problems, like path-finding, are easier to model
using a cost model for the actions. The objective is to
compute a policy which minimizes the expected cost to
reach a goal state. Formally, an MDP is defined as a 7-tuple
(S,A, Pr, C, s0, G, γ), where:
• S is a finite set of world states;
• A is a finite set of actions that the agent could execute;
• Pr : S×S×A→ [0, 1] is the state probability transition

function. Pr(s′, s, a) denotes the probability of reaching
state s′ when executing action a in state s;

• C : A→ R+ is the system’s cost model;
• s0 ∈ S is the initial world state;
• G ⊆ S is the set of goal states to be reached;
• γ ∈ ]0, 1] is the discount factor.
A decision is the choice to execute an action a ∈ A in a

state s ∈ S. A policy is a strategy (a plan), that is, the set of
decisions for every state s ∈ S. An optimal policy is a policy
which assigns the action which minimizes the expected cost
to reach the goal in every state.

Several algorithms exist to compute an optimal policy,
given a cost model. The value iteration algorithm [5] uses the
Bellman equation to compute the best action for each state
in a dynamic programming fashion. It starts by computing a

value V (s) for each state s ∈ S by making several iterations
of Equation 1.

V (s) =


0, if s ∈ G else

min
a∈A

(
C(a) + γ

∑
s′∈S

Pr(s′, s, a) · V (s′)

)
(1)

Once the values of states have converged, an optimal
policy can be extracted using Equation 2. There may exist
several optimal policies since, given a state, it is possible
for two or more different actions to have the same minimal
expected cost.

π(s) = argmin
a∈A

(
C(a) + γ

∑
s′∈S

Pr(s′, s, a) · V (s′)

)
(2)

In other words, each state s ∈ S is associated with the
action a ∈ A that has the best compromise between cost
(C(a)) and the expected remaining cost of actions’ outcomes.
When γ = 1, this problem is also known as the stochastic
shortest path problem.

B. Maximizing Rewards

Other problems are not naturally expressed with a cost
model. Consider the robot motion planning domain in Fig-
ure 1. The map is represented as an occupancy grid where
black and grey squares are obstacles, the blue triangle is the
robot’s initial position and the green circle is the goal. Com-
puting a policy which avoids black and grey squares as much
as possible could be done by attributing a positive reward to
the goal state and a negative reward to undesirable states
(e.g., obstacles). Thus, the objective with this formulation of
MDPs is to compute a policy which maximizes the expected
reward in each state.

Fig. 1. Occupancy grid in a robot motion planning domain. Differ-
ent colours represent the different initial reward values: Black = −1,
Grey = −0.4, White = 0 and Green (goal) = 1. The robot’s initial
position is denoted by the blue triangle.

The formal definition of a rewards-maximizing MDP is
identical to that of cost-minimizing MDPs, except for the cost
model (C : A→ R+) and the goal G, which are replaced by
a rewards model (R : S → R). This rewards model associates
each state with a desirability degree. The Bellman equation
for this formulation is given in Equation 3.



V (s) = R(s) + γmax
a∈A

∑
s′∈S

Pr(s′, s, a) · V (s′) (3)

In this formulation, the best action maximizes the expected
reward in every state instead of minimizing the cost to
reach the goal. An optimal policy is then extracted using
Equation 4.

π(s) = argmax
a∈A

∑
s′∈S

Pr(s′, s, a) · V (s′) (4)

C. Algorithms for Solving MDPs

There exist several algorithms for solving MDP problems,
such as value iteration and policy iteration. The value iter-
ation algorithm iteratively evaluates the Bellman equations
(Equations 1 and 3) for each state until they all converge.
After convergence, the policy is extracted using Equation 2
or Equation 4, depending on the chosen MDP formulation.

As its name suggests, the policy iteration algorithm iterates
on policies rather than on state values. It starts with an
arbitrary policy that is iteratively refined. During an iteration,
the max operator in the Bellman equation may be removed,
since the policy is fixed; this results in a linear equation
system. This linear equation system is solved to compute the
state values V (si). At the end of each iteration, a new policy
is extracted. The optimal policy is obtained when there is no
change in two successive iterations.

These algorithms converge in O(||S||3), where ||S|| is the
size of the state space. Since the state space can be very
large, it is not always possible in practice to extract optimal
policies.

Some advanced techniques have been proposed for solv-
ing MDPs. The Real-Time Dynamic Programming (RTDP)
algorithm [6] is a popular technique to rapidly generate
good, near-optimal policies. The key idea is that some states
have a higher probability than others to be reached during
execution. Instead of iterating on the entire state space,
the RTDP algorithm begins trials from the initial state,
makes a greedy selection over the best action, and then
stochastically simulates the successor state according to the
state probability transition function. When a goal state is
reached, a new trial is started. This process is repeated until
convergence of the greedy policy.

To be efficient, the RTDP algorithm requires a heuristic
function to initialize the state values. The algorithm is guar-
anteed to converge to an optimal policy when the heuristic is
admissible [7]. The main advantage of the RTDP algorithm
is that, when given a good heuristic function, it can produce
a near-optimal policy much faster than any value iteration or
policy iteration algorithm.

Although RTDP gives good results fast, its convergence is
very slow, due to the greedy nature of the selection of states
to explore. States with high probabilities of being reached
will be visited (and their values computed) over and over
again, to the detriment of other, less likely states.

Labeled RTDP [7] (or LRTDP for short) is an improved
version of RTDP that consists in labelling states which have
already converged to their optimal values. Solved states (i.e.,
states that have reached convergence) are avoided during
the stochastic choice of successor states in the trials, thus
allowing the algorithm to visit more states and converge
faster towards an optimal policy.

III. OPTIMAL POLICY FOR WINNING THE GAME

A. The Modified Snakes and Ladders Game with Decisions

The Snakes and Ladders game is a roll-and-move game
which is played on a grid board. The winner is the player
who first reaches the end of the board. In the classic game,
players throw two dice and advance their position by the sum
of the dice’s values. Thus, the game is totally determined by
chance. Snakes and ladders linking board squares are spread
across the grid. When players reach a square with a ladder,
they automatically advance to the square located at the top
of the ladder. When players reach a square with a snake’s
head, they must go back to the square pointed by the tip of
the snake’s tail. It is also possible for a player to have several
successive instantaneous moves (e.g., if a snake starts at the
top of a ladder).

The Snakes and Ladders board game has been modified
in order to introduce decisions. Each turn, players have to
decide of an action from the set of actions A = {a1, aD, aT }
where:
• a1 is the action to advance by a single square;
• aD is to throw one die;
• aT is to throw two dice.
Each action has a set of possible outcomes which are

defined by the function N : A→ 2{1,...,12}. Outcomes define
the number of squares by which the player could advance on
the game board. For instance, N(aD) = {1, 2, 3, 4, 5, 6}. The
probability of outcomes of an action a ∈ A is denoted by
Pr(n ∈ {1, . . . , 12}|a). For instance, Pr(6|aT ) = 5

36 .
Figure 2 presents a simple board for the game with n = 20

squares. The function T : {0, . . . , n − 1} × {1, . . . , 12} →
{0, . . . , n− 1} defines the square the player will be in after
considering the snakes and ladders on the board. For instance
in the example board, T (0, 2) = 2, T (0, 1) = T (0, 4) =
4 and T (10, 1) = 18. Moves that would bring the player
beyond the last board square are prohibited and result in
the player not moving. The last position has to be reached
with an exact move. Thus, T (18, 1) = 19 but T (18, 2) = 18
because position 20 does not exist.

B. Single-Player

The simplest problem in the modified game of Snakes and
Ladders is to decide which actions to take in order to reach
the end of the board as quickly as possible without consid-
ering the opponent. This problem is easily solved using an
MDP to compute an optimal policy which attributes an action
to each board position. Since the goal is to minimize the
expected number of turns, the cost formulation of MDPs is
the most appropriate one. The state space S is defined as the



Fig. 2. Simple board for the Snakes and Ladders game. Red arrows
represent “Snakes”, and green arrows represent “Ladders”.

set of states for each board position S = {s0, s1, ..., sn−1},
where s0 is the initial state and sn−1 ∈ G is the final (goal)
state. The probabilistic state transition model is defined by
Equation 5.

Pr(sj , si, a) =
∑

k∈{x∈N(a)|T (i,x)=j}

Pr(x|a) (5)

Since the state horizon is finite (the game ends once the
last square is reached) and the goal is to find the shortest
stochastic path, the discount factor γ = 1. All actions cost
one turn; thus, the C(a) term could simply be replaced by 1
and removed from the summation. By merging Equations 1
and 5, we obtain Equation 6.

V (si) =


0, if i = n− 1 else
1 + min

a∈A

∑
x∈N(a)

Pr(x|a) · V (sT (i,x)) (6)

The value iteration algorithm can be implemented in a
straightforward manner simply by programming Equation 6.
For small boards, the policy generation is very fast. How-
ever, on larger board (thousands or millions of states) the
convergence could be very slow if implemented in a naı̈ve
way. To speed up convergence, many strategies can be used.

The value iteration algorithm updates the state values V
during several iterations until convergence. Most AI text-
books present this algorithm as the process of updating a
V vector using the values V ′ from the previous iteration. A
faster implementation may be achieved by updating a unique
vector of V values instead. Updated values are thus used
sooner.

Another strategy that could be added to this one is the use
of a particular ordering for iterating on states. Iterating in
the state order will be very slow because several iterations
will be necessary before cost values propagate from the goal
state to the initial state. Thus, starting each iteration from the
final state results in much faster convergence.

Table I shows empirical results for a few iterations of
the algorithm on the board from Figure 2. The first column
indicates the states. The next columns presents the current
V (si) value after the nth iteration. After nine iterations,
the algorithm has converged and the last column shows the
extracted policy. Values in the last iteration column represent
the expected number of remaining turns to reach the end of
the board.

State Iter#1 Iter#2 Iter#3 ... Iter#9 π

s0 4.03 3.70 3.67 ... 3.66 aT
s1 3.75 3.50 3.48 ... 3.47 aT
s2 3.44 3.28 3.26 ... 3.26 aT
s3 4.18 3.17 3.08 ... 3.07 aT
s4 3.67 3.00 2.94 ... 2.93 aT
s5 3.26 2.91 2.88 ... 2.87 aT
s6 2.84 2.82 2.81 ... 2.80 aT
s7 2.82 2.78 2.77 ... 2.77 aT
s8 2.62 2.61 2.61 ... 2.61 aD
s9 2.72 2.69 2.67 ... 2.67 aD
s10 2.00 2.00 2.00 ... 2.00 a1
s11 2.42 2.40 2.39 ... 2.39 aT
s12 2.00 2.00 2.00 ... 2.00 a1
s13 2.00 2.00 2.00 ... 2.00 a1
s14 2.00 2.00 2.00 ... 2.00 aT
s15 3.33 3.11 3.04 ... 3.00 aD
s16 3.00 3.00 3.00 ... 3.00 a1
s17 2.00 2.00 2.00 ... 2.00 a1
s18 1.00 1.00 1.00 ... 1.00 a1
s19 0.00 0.00 0.00 ... 0.00 aT

TABLE I
EMPIRICAL RESULTS FOR THE VALUE ITERATION ALGORITHM ON THE

BOARD FROM FIGURE 2.

Figure 3 compares the running time of a standard MDP
implementation with an optimized one on various board
sizes.
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Fig. 3. Performance improvement of an optimized policy generator.

C. Two Players

Playing with the previous policy which minimizes the
number of moves to reach the end of the board as quickly
as possible is unfortunately not always the best strategy to
win against an opponent. The state space in now defined
by considering the position of both players on the board.
Consider the board and the generated policy in Figure 4.
Let the current game state be such that player PA is at
position 17 and player PB is at position 18. What is the
best action for player PA? Using the optimal single-player
policy, PA will choose action a1 and then reach position 18.
However, player PB will win the game at his next turn. The
probability of winning the game in this state is thus zero if we



adopt the strategy to reach the end of the board as quickly
as possible. In this situation, the best move is a desperate
one: by selecting action aD, player PA can hope to move by
exactly 2 squares and then win the game. Thus, in this game
state, player PA still has a probability of 1

6 to win the game
using action aD.

Fig. 4. Simple board from Figure 2 with an optimal single-player policy.
Actions a1, aD and aT have been abbreviated to 1, D and T , respectively,
for conciseness.

The computation of the best decision to take in a two
players context is more challenging than in a single-player
context. Indeed, decisions in a multiplayer context do not
only depend on the player’s position, but also on the oppo-
nent’s position. A two-players policy associates an action to
a pair of positions, and is defined as π : S → A, where
S = {si,j ∀ (i, j) ∈ {0, . . . , n− 1}2}.

Provided that the opponent’s strategy can be modelled
using one such policy πsp (which does not evolve over time),
we can calculate a policy π′(πsp) maximizing the chances of
winning the game against said opponent. Several algorithms
can be used to compute π′(πsp).

1) Alpha-Beta Pruning: Since this is a zero-sum game
with two players, one could suggest using Alpha-Beta
Pruning-based algorithms. Algorithm 1 presents an adapta-
tion of the classic algorithm to consider chance nodes [8]. A
limitation of Alpha-Beta Pruning is that it requires to reach
leaf nodes of the search tree to make an optimal decision.
Even if a very small board is used, leaf nodes could be
very deep in the search tree. Another problem is that the
outcome of the actions are probabilistic, which may produce
infinite loops with a non-zero probability. A common strategy
is to cut the search tree by setting a maximum depth.
Nodes at this depth are evaluated using a heuristic function.
This evaluation function is generally approximate and cannot
guarantee optimality.

2) MDP-based Solution: To guarantee optimality, an
MDP can be used. Since MDPs are designed for sequential
decision-making problems, one may question this choice
because it does not naturally fit games with adversaries.
However, since an assumption was made on the behaviour
of the opponent (by using a fixed policy), we could integrate
the opponent’s choices in the player’s decisions.

The cost formulation of MDPs is not exactly appropriate
anymore since the goal is not to minimize the expected
number of turns, but rather to reach the end of the board
before the opponent. We thus adopt the rewards formulation:
a reward is simply put on states where the player wins the
game. Since all winning states are considered equivalent

Algorithm 1 Alpha-Beta Pruning with Chance Nodes

1. ALPHABETASEARCH(si,j )
2. (value, action)←MaxNodeSearch(si,j ,−∞,+∞)
3. return action

5. MAXNODESEARCH(si,j ,α, β)
6. if i = n− 1 return +1
7. if j = n− 1 return −1
8. value← −∞
9. for each ai ∈ A

10. v ← 0
11. for each x ∈ N(ai)
12. i′ ← T (i, x)
13. (vn, aj)←MinNodeSearch(si′,j , α, β)
14. v ← v + Pr(x|ai) · vn
15. if v > value
16. value← v
17. action← ai
18. if value ≥ β break
19. return (value, action)

21. MINNODESEARCH(si,j ,α, β)
22. if i = n− 1 return +1
23. if j = n− 1 return −1
24. value← +∞
25. for each aj ∈ A
26. v ← 0
27. for each y ∈ N(aj)
28. j′ ← T (j, y)
29. (vn, ai)←MaxNodeSearch(si,j′ , α, β)
30. v ← v + Pr(y|aj) · vn
31. if v < value
32. value← v
33. action← aj
34. if value ≤ α break
35. return (value, action)

(winning by a distance of 2 or 200 positions is equivalent)
the reward is set uniformly as given by Equation 7.

R(si,j) =

{
1, if i = n− 1 ∧ j < n− 1 else
0

(7)

The transition probability function is defined in such a
way as to consider that both players move simultaneously,
as described in Equation 8.

Mi,i′ = {x ∈ N(a)|T (i, x) = i′}
Mj,j′ = {y ∈ N (πsp(sj)) |T (j, y) = j′}
Pr(si′,j′ , a, si,j) =

∑
x∈Mi,i′

Pr(x|a)
∑

y∈Mj,j′

Pr(y|πsp(sj))

(8)
Integrating Equations 3 and 8 results in Equation 9.

V (si,j) = R(si,j)

+ max
a∈A

∑
x∈N(a)

Pr(x|a)

·
∑

y∈N(πsp)

Pr(y|πsp) · V (sT (i,x),T (j,y))

(9)

Since we consider simultaneous moves in state transition,
an important question is what happens when both players
reach the end of the board during the same turn. Since we



i \ j 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 T T T T T T T T T T T T T T T T T T 1 T

1 T T T T T T T T T T T T T T T T T T 1 T

2 T T T T T T T T T T T T T T T T T T 1 T

3 T T T T T T T T T T T T T T T T T T 1 T

4 T T T T T T T T T T T T T T T T T T 1 T

5 T T T T T T T T T T T T T T T T T T 1 T

6 T T T T T T T T T T T T T T T T T T 1 T

7 D T T T T T T T T T T T T T T T T T T T

8 D D D D D D D D D D D D D D D D D D T T

9 1 D D D D D D D D D D D D D D D D D T T

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T T

11 1 T T T T T T T T T T T T T T T T T T T

12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T T

13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D T

14 T T T T T T T T T T T T T T T T T T D T

15 D D D D D D D D D D D D D D D D D D D T

16 1 1 1 1 D D D D D D D D D D D D D D D T

17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 D T

18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 T

19 T T T T T T T T T T T T T T T T T T T T

Fig. 5. Optimal policy to beat an opponent playing with an optimal policy to reach the end of the board as quickly as possible. The row index i gives
the position of the AI player and the column index j gives the opponent’s position.

play before the opponent, reaching the state sn−1,n−1 from
an another state si,j such that i, j < n − 1 means that the
first player reaches the end before the opponent. Thus, if a
draw is not allowed, a reward should be put on this particular
square: R(sn−1,n−1) = 1.

Figure 5 shows an optimal policy to beat an opponent
playing an optimal policy to reach the end of the board
as quickly as possible. Note that the optimal policy is not
necessarily unique. At each turn, the player in square i, which
plays against an opponent in square j, looks up the cell
(i, j) to take the best action which maximizes his chance
of winning.

Table II presents results which compare the percentage of
games won by the single-player optimal policy (computed as
presented in Section III-B) against the two-players optimal
policy (computed as presented here) on a board of size
n = 1000 squares. Results shows an improvement of 3 % of
winning chances when using the two-players optimal policy
against a single-player optimal one.

Single-Player Policy Two-Players Policy
Single-Player Policy 50 % 47 %
Two-Players Policy 53 % 50 %

TABLE II
IMPROVEMENT WHEN CONSIDERING THE OPPONENT.

Figure 6 presents the required time to generate single-
player and two-players policies. Optimal decision-making
which considers the opponent comes at a cost: the state space
grows quadratically as the board size increases.

D. Optimality Against an Arbitrary Opponent
It is important to note, however, that as π′(πsp) is condi-

tioned on πsp, it maximizes the player’s chances of winning
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Fig. 6. Required time to generate single- and two-players policies.

exclusively against this particular policy. This leads to the
fundamental question: can we find a policy maximizing the
chances of winning against an arbitrary opponent?

Maximizing one’s chances of winning against a given
opponent involves taking advantage of the shortcomings of
this particular opponent. Since two different opponents do
not play the same way, we need two different policies to
play optimally against each one of them.

Proof: Consider a 3-square board in which s0,1 denotes
the current state, i.e., the player whose turn it is to play is in
square 0 while his opponent is in square 1, one square away
from victory. Given this particular state, the optimal action
is the one maximizing the probability of winning the game.
Let an arbitrary policy π1 associate the action a1 to the state
s1,x∀x. This policy instructs the player to move one square



forward to victory when he’s on the penultimate square. An
optimal policy π′(π1) therefore maps the state s0,1 to the
action aD, preserving a probability of winning of 1

6 .
Let another arbitrary (and naı̈ve) policy π2 associate the

action aD to the state S1,x∀x. A player following this policy
throws a die on the penultimate square. Contrarily to π′(π1),
the optimal policy π′(π2) maps the state s0,1 to the action
a1, indicating that the best winning chances are obtained by
advancing one square forward, hoping that the opponent does
not get 1 on his die roll, and then claiming victory (winning
with probability 5

6 ). Using π′(π1) against the weaker π2
policy would greatly reduce the winning chances. Indeed,
π′(π1) instructs the player to roll a die in the state s0,1,
yielding winning chances of 11

16 (see Equation 10) < 5
6 ,

which corresponds to the probability of winning by rolling a
2 added to the probability of winning by rolling a 1 instead
and advancing one square during the next turn (providing the
opponent did not already win).

11

36
· lim
n→∞

n∑
i=1

(
4

6
· 5
6
)i =

11

16
(10)

Hence there does not exist an optimal policy against an
arbitrary opponent; optimal policies are rather conditioned
upon a particular opponent’s strategy.

However, instead of extracting the opponents’ actions from
fixed policies, one could allow these actions to vary over
time. In an MDP setting, this amounts to optimizing the
expected reward with respect to a different opponent policy
during each new iteration. If we set the opponent’s policy
to be at all times the exact same policy that is currently
being computed (which possibly changes at each iteration),
solving the MDP amounts to finding a policy which plays
optimally against itself. We postulate that this process even-
tually converges to an optimal policy that we denote πopt,
such that π′(πopt) = πopt. Empirical experiments have yet
to show an example where this is not the case, but such
convergence has not been theoretically proven. Note that πopt
is not necessarily unique, as many actions may have the same
expected reward. This last policy can be considered as a form
of globally-optimal policy, in the sense that it offers at least
a 50 % victory percentage against any arbitrary opponent. It
does not, however, exploit the particular weaknesses of each
individual opponent.

E. Generalization to Multiplayer

Considering more than two players offers a new challenge.
Similarly to the single-player to two-players generalization,
a simple avenue is to add a new dimension to the state
space. Thus, a state could be defined by a m-tuple s =
(p1, p2, . . . , pm) which gives the positions of all m players.
A problem with this approach is that the size of the state
space grows with the size of the board and the number of
players, i.e, ||S|| = nm. Solving this problem in an optimal
way becomes quickly intractable. A viable approximation for

multiplayer is to model the game as a two players game and
only consider the opponent that is closest to the goal state.

IV. OPTIMAL POLICY FOR GAMING EXPERIENCE

A more complex aspect of the game involves considering
the gaming experience of a human opponent. Playing against
an opponent with a similar skill level is generally more
fun than playing against someone who is too strong or too
weak. Properly balancing the difficulty level of an intelligent
adversary in a video game can prove to be quite a laborious
task.

Before proposing a solution to this problem, there is
an important question we need to answer: what exactly is
gaming experience? Without a clear definition, it is difficult
to try to maximize it. Thus, a formal gaming experience
mathematical model is required. Elaborating such a model is
an orthogonal problem to that of optimizing an AI player’s
decisions to maximize the opponent’s gaming experience.
Once a gaming experience model is given, it is simply
integrated into the equation.

As was the case with the policy developed in Section III-C,
an assumption has to be made about the opponent’s playing
strategy. For the rest of the paper, consider that the opponent
does not play optimally but rather only follows his intuition.
Since throwing two dice generally allows the player to move
closer to the final state, the opponent player selects an action
using the strategy πopp presented by Equation 11. Note that
the opponent only considers his own position j and does not
consider the AI player’s position i.

πopp(si,j) =


aT , if j < n− 6

aD, if j < n− 3

a1, otherwise
(11)

A. Simple Opponent Abandonment Model

As a simple model of gaming experience, an abandonment
rule is defined as follows. The opponent player abandons
the game if he is too far from the AI player’s position
on the board, i.e., the opponent believes he has no chance
of winning. Another source of abandonment is when the
opponent has no challenge, i.e., when the opponent believes
that the game is too easy. More precisely, the opponent
abandons the game when the distance between the players’
positions is greater than half the size of the board.

Thus, the goal of the AI player is to maximize his chance
of winning the game before the opponent abandons. This
problem can be solved using an MDP in a similar way of
the one which maximizes the chance of winning against a
given opponent.

To solve this problem, we use the same strategy as the
one presented for a two opponents game (Section III-C.2),
i.e., a state is defined as a pair of positions on the board.
The main difference is that there is a set of abandonment
states Sab ⊂ S which is defined as Sab = {si,j ∀ (i, j) ∈
{0, ..., n − 1}2 : |i − j| ≥ n

2 }, where n is the number
of board squares. By definition, states s ∈ Sab are states
where the opponent abandons the game because of the lack



of enjoyment (the opponent being too weak or too good).
Thus, these states are terminal where no action is applicable.
An action applicability function, defined as App : S → A,
is used to find out which actions are applicable in a given
state.

Table III presents empirical results (1 000 000 simulations
on a board of size n = 1000) that demonstrate how using an
optimal policy to win the game results in the abandonment
of most games (first column). Instead, a policy computed
by taking account of the opponent’s model greatly reduces
the number of abandonments, while still exposing an optimal
behaviour, in the sense the the AI player wins the majority
of games. Note that this could also discourage the opponent;
the policy could be improved to try to balance the number
of wins and losses.

Optimal Policy Considering Opponent Model
Wins 33.9 % 97.1 %
Losses 0.6 % 1.6 %
Abandonments 65.5 % 1.3 %

TABLE III
IMPROVEMENT WHEN CONSIDERING THE ABANDONMENT MODEL.

Solving MDPs for large state spaces takes a very long
time to converge to an optimal policy. In most situations,
a near-optimal policy, generated with an algorithm such
as RTDP, is very much acceptable since these techniques
produce good results in a short amount of time. Figure 7
empirically compares the performance of value iteration and
RTDP on a large game board (n = 1500) over 1 000 000
simulations. The quality of the policies, measured in terms of
the percentage of victories without the opponent abandoning,
is displayed as a function of the allotted planning time. The
difference, while not astounding, would still be welcome in
a time-critical context.
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Fig. 7. Quality of plans as a function of the allotted planning time.

This simple abandonment model could be further im-
proved. For instance, the abandonment could be probabilistic
instead of deterministic. We could define a probability den-

sity function which specifies the probability of abandonment
given the position of both players.

B. Distance-Based Gaming Experience Model
Another user experience model that could be used is a

distance-based one. Rather than setting rewards on states
which correspond to the end of the game, rewards can
be attributed on all states identified by Equation 12. The
maximum reward (0) is obtained when both players are in
the same board position and it decreases quadratically as the
distance between both players increases.

R(si,j) = −(i− j)2 (12)

Since the goal is to maximize the user gaming experience,
the finite time horizon assumption may be not valid anymore.
An infinite loop is now possible. For this reason, the discount
factor γ has to be set to a value γ < 1. This value is set to
weight the AI player’s preference between short-term and
long-term rewards.

V. CONCLUSION

In this paper, we presented a modified version of the
classic Snakes and Ladders board game. This game is used
in our introductory course in artificial intelligence to teach
Markov Decision Theory to undergraduate computer science
students. Although the game is simple, it contains many
interesting aspects also present in more complex computer
games. This game offers several perspectives which require
different MDP formulations and strategies to generate opti-
mal policies. The most complex challenge is the generation
of a policy which optimizes the gaming experience of a
human player.

As future work, we consider a few possible avenues to
add new challenges for the development of AI algorithms
in this game framework. One of them is to use machine
learning techniques to automatically learn the opponent’s
gaming experience model. For instance, we could provide
a database of previously-played games where each game is
associated with a score (win, loss, draw, abandonment, etc.)
A model could be learned from this history and then be
integrated into the MDP policy generation algorithm.
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