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Abstract

In this paper we explore challenges related to the engineering
of plan libraries for plan recognition. This is an often over-
looked problem, yet essential in the design of any real world
plan recognizers. We mainly discuss challenges related to the
evaluation of equivalence between plan libraries. We explain
why this is a potential source of ill-conceived plan libraries.
We consider an existing well-established probabilistic plan
recognizer as vehicle for our discussion, using the formal-
ism of probabilistic hierarchical task networks to represent
plans. We propose avenues for exploring solutions to those
challenges within that framework.

Introduction
In plan recognition, although formal representations are
used to model behaviours of the observed agent, to date little
attention has been paid to the knowledge engineering of plan
libraries. This is in striking constrast to the area of formal
methods, where experts know the importance of tools for an-
alyzing the equivalence of program models. In state-based
transition models, for example, theoretical tools such as
equivalence by simulation, stuttering equivalence, and oth-
ers, have been invented to make it possible to identify sub-
tle differences in the behavior of programs that may appear
equivalent at the surface but that differ in practice (Baier and
Katoen 2008).

When designing a plan library, an important issue for the
knowledge engineering is to determine when two plan struc-
tures are equivalent. It is possible for two plan libraries to
look equivalent on the surface, while hiding subtle seman-
tic differences that have a large effect on the outcome of the
plan recognizer. While addressing such debugging problems
for a plan library concerning a realtime strategy (RTS) video
game, we ended up raising broader questions related to the
knowledge engineering of plan libraries.

One question concerns equivalence between plan li-
braries. In other words, when can one plan library replace
another without affecting the outcome of the plan recog-
nizer? Intuitively, two plan libraries should be equivalent if
they model the same behaviours. This becomes subtle when
one consider that a plan library models to some extent inter-
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nal choices or decisions made by the observed agent and that
the modeled behaviour may be only partially observable.

Plan representation formalisms are for the most part
judged based on their expressive power. From a knowl-
edge engineering standpoint, we argue that another impor-
tant quality for a plan representation formalism is modeling
sensitivity, that is, the extent to which a given plan repre-
sentation is susceptible to differences in semantics that are
difficult to detect from their syntax.

The notions of plan equivalence and modelling sensitiv-
ity convey some of the difficulties knowledge engineers face
when designing a plan library for a real world application.
To initiate the discussion on these issues, we discuss the
use of sampling from the probability distribution implicitly
specified by the plan library (and some background assump-
tions). With such sampling, the knowledge engineer can
answer questions about the equivalence and sensitivity be-
tween plan libraries.

Tools have already been investigated supporting the con-
struction of planning domains (McCluskey, Liu, and Simp-
son 2003). Such tools are aimed at the knowledge engineer-
ing of the planning domain but not the plan library. When
specifying a planning domain, the focus is on modeling ac-
tions or operators in terms of their preconditions, effects,
related resources and constraints. In contrast, a plan library
as required by a plan recognizer, is a specification of abstract
plans, conveying a richer structure than just actions or opera-
tors, in terms of hieararchy of subgoals and/or subplans, and
temporal relationship between them, the lower level of the
hierarchy being the actions or operators. As there are mod-
eling issues that are specific to plan libraries, we argue that
appropriate corresponding knowledge engineering methods
should be investigated.

To fix a context, here we consider plan libraries mod-
eled using probabilistic hierarchical task networks (PHTN).
However, the key points of our discussion can be generalized
to different plan representation formalisms.

Motivating Example
Real Time Strategy (RTS) games involve multiple opposing
forces, each consisting of a team of one or more players, and
each player controlling a number of military units. Units
are typically recruited from structures that the player builds
using different resources, as the game advances. The victory



conditions can be different from one scenario to another, but
usually involves destroying some or all of your opponents’
structures or controlling strategic points for a certain period
of time. As armies build up on each side, initial skirmishes
can quickly turn into all-out wars.

Players in RTS games need to be constantly aware of the
behaviours of their opponents to anticipate and counter their
future moves. Correctly predicting the adversary’s actions is
key to deciding winning moves, whereas incorrectly identi-
fying it often puts the player in a dire position. In model-
ing the plan library for an RTS domain, one can distinguish
between strategic and tactical plans. Strategic plans dictate
what kind of units the player will produce, whether he will
play aggressively, or defensively. Tactical plans dictate how
units are deployed and used. These two types of plans are
not independent; the strategy a player chooses will affect
the composition of his army and therefore will affect how he
will use it on the tactical level. It is useful to separate them,
however, because the cues used to recognize strategic plans
are for the most part different from the ones used to recog-
nize tactical plans. Recognizing these plans separately does
not prevent using the output of one plan recognizer as input
to the other.

Figure 1 illustrates an oversimplified strategic plan library
for StarCraft, representing possible openings for the Zerg
faction. The trees in this figure are task decomposition trees,
which are partially-ordered AND/OR trees. As is custom-
ary, AND nodes are indicated by subtrees crossed with an
arc, so that economic-opening-a is done by performing all
of its children: recruit 5 workers, recruit overlord, recruit
3 workers, etc. OR nodes are subtrees without arcs across
them, so that build may be done either by doing 12 pool or
12 hatch. Cross edges indicate temporal orderings. All of
the sub plans in Figure 1 are totally ordered.

economic-opening-a

recruit 
5 workers

recruit 
overlord

recruit 
3 workers

build 
hatchery

build 
spawning pool

aggressive opening

recruit 
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build
spawning pool

recruit 
2 workers

recruit
6 zerglings attack

economic-opening-b
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build 

12 pool 12 hatch 

build 
hatchery
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Figure 1: Simplified strategic plans for StarCraft

To make the discussion concise, the rest of the paper will
be illustrated by artificial and much simpler plan libraries
like those in Figure 2. They model the basic issues related
to or-branch choices and action interleaving that are encoun-
tered in the StarCraft plans, while being more terse. Note
that G1 − a shows partial ordering, a must be done before b
and c, but b and c may appear in either order.

G1-a

a b c

G2

d e

G1-b

a S1

b c

S2 S3

c b

Figure 2: Simple artificial plan libraries. L1 = {G1a,G2},
L2 = {G1b, G2}.

Our interest in these issues was triggered when we en-
countered the following issue: Consider the following two
plan libraries, L1, that consists of the HTNs G1a and G2

from Figure 2, and L2, that consists of G1b and G2. Note
that G1a and G1b generate the same strings of symbols –
a followed by b and c in either order. One may jump to
the conclusion that the probability of seeing b after seeing
a followed by d would be the same for both librairies. If
the result is different, then there must be a bug somewhere.
However, according to the probability model proposed for
PHATT (Geib and Goldman 2009) these two libraries gen-
erate quite different distributions: in particular with L1 the
probability of seeing b after having seen a followed by d is
1/3, whereas the result is 1/4 with L2.

Two of our co-authors (Kabanza and Bellefeuille) became
convinced that there must be a bug somewhere, and the is-
sue bothered them for a long time. The question for a long
time was: Why are the probabilities different if the plan li-
braries are equivalent? After they consulted the PHATT co-
author, he too got trapped by the cognitive bias for a while,
before being able to identify what made the models diverge:
while they are linguistically equivalent, they are not proba-
bilistically equivalent. In the following section of the paper
we will briefly introduce the probabilistic plan recognizer
PHATT and the probability model it assumes. Then we will
return to this seeming paradox.

PHATT: A Bayesian plan recognition system
PHATT (Geib and Goldman 2009) is a Bayesian plan recog-
nition system. At the core of PHATT is a probabilistic model
of how action sequences are generated by an agent that is
following some unobserved plan taken from a plan library



that is known by the observer (Goldman, Geib, and Miller
1999). The approach is Bayesian in that the plan library
(with some ancillary assumptions) describes a probability
distribution over the possible action sequences. This prob-
ability distribution is inverted, using Bayes’ law to identify
the plans that underly a given action sequence.

Plan recognition systems in the PHATT family (which
also include the original, unnamed system (Goldman, Geib,
and Miller 1999) and the heavily optimized Yappr (Geib,
Maraist, and Goldman 2008)), assume a very simple HTN
model, as partially-ordered AND/OR trees or, equivalently,
as plan grammars. Plan grammars are similar to context free
grammars (CFGs), with terminals for the observable actions.
Unlike CFGs, the right hand sides of plan grammar rules
are unordered sets, rather than ordered sequences. Rules
can be annotated with ordering constraints that specify that
(the expansion of) one symbol must precede (the expansion
of) another. For example, a plan grammar rule, S → a, b
could generate either the string a, b or the string b, a. With
an added ordering constraint, S → a, b; b < a, could only
generate the string b, a.

The generative model of plan execution that PHATT as-
sumes is as follows:

1. The agent first chooses a set of one or more top level goals
to pursue.

2. For each of these top level goals, the agent chooses a
decomposition (see, e.g., (Ghallab, Nau, and Traverso
2004)) that reduces it to a partially-ordered set of prim-
itive actions.

3. The agent executes these (interleaved) plans, at each time
point choosing a single action from the set of enabled ac-
tions that constitutes the agent’s pending set. An action is
enabled once all of its predecessors have been performed.

The choices in this process are modeled probabilistically.
Typically, for lack of more information, we have modeled
these choices uniformly, assigning an equal probability to
each possible outcome. However this is in no way an inher-
ent feature of the model; had one good reasons to choose
different probabilities, they could easily be incorporated.

Given a plan library P and a goal G, with a slight abuse
of notation, we can describe PHATT model for computing
the probability of a sequence of observations σ = σ1...σn as
follows:

p(σ) = p(σ1...σn) (1)
= p(σ1...σn|G,P)p(G,P) (2)
= p(σ1...σn|P)p(P|G)p(G) (3)

σ is a sequence of actions (1). The probability of an action
sequence is conditional on the agent’s goals (G) and plans
(P) (2). The agent’s actions are directly conditional only on
the plans, and the plans only on the goals (3). Finally, each
step is independent of its predecessors, given the state of the
pending set (π), and the initial pending set is conditional on
the plans:

p(σn|σ1...σ1−n,PG) = p(σn|πn)× (4)
p(πn|σ1...σ1−n,P,G)

p(π1|P,G) = p(π1|P)p(P|G) (5)

Prior work has shown how to invert this generative model,
given a particular string of observations, σ to recover quanti-
ties of interest such as p(G|σ), the probability that the agent
is pursuing some particular goal, G, given that we have ob-
served the string of actions, σ. Several other queries of in-
terest can be answered in the same way.

Resolving the paradox
Let us return to the seeming paradox that we introduced ear-
lier. The two grammars of Figure 2, which appear intuitively
to be equivalent, actually generate different probability dis-
tributions.

For a worked example, see Figure 3, which shows the
different probabilies that L1 and L2 assign to the sequence
abcdef . In the notation of Figure 3, p(d(x)|X) is the proba-
bility of drawing the terminal/action x from the pending set
X . For example, the first thing that happens in generating
the string abcdef is to draw the action a out of a pending set
that contains the actions a and d, and the probability of this
event is p(d(a)|{a, d}). For the purposes of this discussion,
we assume uniform probability distributions: p(d(x)|X) =
p(d(y)|X) for all pending sets X and all distinct actions x
and y in X . Similarly, the chance of choosing any node for
an OR is equal, so p(S2|S1) = p(S3|S1).

The mystery deepens when we see that both L1 and L2

generate the same action sequences for single goals. That is

p(abc|G1, L1) = p(acb|G1, L1) =
p(abc|G1, L2) =p(acb|G1, L2)

and, of course,

p(def |G2, L1) = p(def |G2, L2)

The key to the seeming paradox is to recall that there are
three components to the PHATT probability model. The first
is the choice of goals. This component of the model is not
involved here — we have limited ourselves to discussing the
probabilities of different action sequences conditioned on a
known set of goals. The second component is the decom-
position of goals to partially-ordered sets of actions, given
the top-level goals. We have seen above that this is not the
issue at hand, since the two libraries generate the same par-
tially ordered sets in isolation. Our attention, then, must
turn to the third component of the model — the way actions
are drawn from the pending set, conditioned on that pending
set’s composition (it is populated by these partially ordered
sets of actions).

Let us return to the example where we first see a, followed
by d. With the “flat”plan library, we are certainly in a state
in which the next action will be chosen from the pending
set {b, c, e}, so, if the distribution is uniform, the chance of
seeing any one of these symbols next is 1

3 . On the other
hand, if we have the hierarchical library, then the agent is
in one of two possible states/pending sets, either {b, e} or
{c, e} and now we can clearly see that, assuming uniformity
again, the chance of e is 1

2 whereas the chance of either b or
c is 1

4 .
We may get a clearer sense of the mechanism, by examin-

ing an even simpler plan library, with only a single top-level



p(abcdef |G1a, G2, L1) = p(d(a)|{a, d})p(d(b)|{b, c, d})p(d(c)|{c, d})
p(d(d)|{d})p(d(e)|{e})p(d(f)|{f})

= 1/2 ∗ 1/3 ∗ 1/2
= 1/12

p(abcdef |G1b, G2, L2) = p(abcdef |G1 − b, G2, S2)p(S2|G1b)
= p(abcdef |P1, P2, S2, G2)/2
= p(d(a)|{a, d})p(d(b)|{b, d})p(d(c)|{c, d})

p(d(d)|{d})p(d(e)|{e})p(d(f)|{f})/2
= p(d(a)|{a, d})p(d(b)|{b, d})p(d(c)|{c, d})/2
= 1/2 ∗ 1/2 ∗ 1/2 ∗ 1/2
= 1/16

Figure 3: L1 and L2 assign different probabilities to P (abcdef |G1, G2).

G1’

a S1

b c

S2 S3

c b

G1

a b c d

d

Figure 4: Simple plan library.

goal, shown in Figure 4. For this simple example, we can
exhaustively enumerate the set of strings generated with but
a single goal, and we present the results in 1. Here it is the
partially-ordered node d that causes the divergence.

Language equivalence and probabilistic
equivalence

The examples we have discussed above show that it is criti-
cal to distinguish between two notions of equivalence when
reasoning about probabilistic HTNs. We say that two plan li-
braries are language equivalent if they generate the same set
of action sequences (i.e., equivalent if we ignore the proba-
bilities). We say that they are probabilistically equivalent if
they are language equivalent and each sequence is generated
with the same probability with both libraries.

We argue that when working with PHATT and assuming
a uniform probability distribution, a cognitive error bias is

Sequence G1 prob. G′
1 prob.

abcd .083 .062
abdc .083 .062
acbd .083 .062
acdb .083 .062
adbc .083 .125
adcb .083 .125
dabc .250 .250
dacb .250 .250

Table 1: Table showing exhaustive generation from library
of Figure 4.

created, leading a knowledge engineer to mistakenly believe
that linguistically equivalent plan libraries will also be prob-
abilistically equivalent. While modeling plan librairies for
the StarCraft domain, Kabanza and Bellefeuille had two lin-
guistically equivalent plan librairies, yielding different goal
recognition probabilities under the PHATT model. It took
us time to realize that this was normal since the librairies
were not in fact probabilistically equivalent, albeit language
equivalent.

The divergence betwen linguistic and probabilistic equiv-
alence is problematic because it makes it hard for a knowl-
edge engineer to specify correct plans. How does one know
when G1 is the correct model and when G′

1 is the one that
should be used? One problem comes from the fact that the
uniformity hypothesis hides the probabilities in the struc-
ture. If one was to explicitly represent the probabilities in
the model, it might alleviate this problem somewhat. A more
substantial problem is that the probability distributions are a
function of both the plan library, which the knowledge en-
gineer constructs, and the pending set/interleaving model,
which the knowledge engineer may not perceive at all. In-
deed, as we have seen in our first example, a knowledge en-
gineer who explores the probability distributions with only



single plan trees, may in some case fail to even encounter the
issue (although the second example shows that even simple
plan libraries may bring the issue to the fore).

One thing that makes this worrisome is that one may in-
advertently generate different probability distributions when
simply trying to provide a more “tidy” plan library. This is
the case in our first example. This is particularly bothersome
for a community like the computer science community, in
which one often encapsulates bits of behavior to provide
information-hiding. It seems wrong that such encapsulation
should involve changing the probability distributions.

In the next section we discuss some preliminary directions
we have considered towards giving plan library coders a bet-
ter sense of the implications of their modeling decisions.

Exploring the distributions
To evaluate probabilistic equivalence between two libraries
it is tempting to try getting inspiration from formal method
approaches to defining equivalence between state transi-
tion systems (Baier and Katoen 2008). Many notions of
equivalence between state transition systems exist, includ-
ing bisimulation equivalence, trace equivalence, and stut-
ter equivalence. Grossly, two state transition systems (or
finite state machines) are bisimilar if each state in one sys-
tem has a corresponding state in the other system exhibiting
the same stepwise behaviours as the former state; in other
words, each outgoing transition from one state is mimicked
by a corresponding outgoing transition from the other state.
Two systems are trace equivalent if they exhibt the same exe-
cution sequences (traces). The notion of stutter equivalence
accounts for internal (invisible) transitions. More specifi-
cally, two systems are stutter trace equivalent if their traces
only differ by internal transitions. A stutter bisimulation is
defined likewise.

It is interesting to note that algorithms exhist for comput-
ing those equivalence relations, that is, establishing whether
two transition systems are equivalent. Trying to adapt such
algorithms to PHTNs pose two main challenges. Firstly,
PHTNs convey more than transitions between steps. In ad-
dition, they convey hierarchical abstractions. With respect
to state transition models, they are better compared to state
charts (Harel 1987). Secondly, PHTNs include a probabilis-
tic model. For the time being, we do not see how to over-
come these two issues. We are instead investigating an ap-
proach based on the sampling of the probability distributions
for PHTNs.

Since the PHTNs implicitly represent a probability distri-
bution over a set of action sequences, to evaluate different
plan libraries we must compare the probability distributions
to which they give rise. Indeed, we have written a very sim-
ple, exhaustive generator to allow us to explore the distri-
butions corresponding to the very simple grammars in dis-
cussed in this paper. This very simple tool allows us to enu-
merate the probability distribution for a given plan library
and a given set of top level goals.1 We have seen an example

1Without loss of generality, it could do the same task for any
finite number of top level goals, simply by adding a top-level ter-
minal that can rewrite to the “real” goals.

of the output of this system in Table 1.
Exhaustive enumeration will not, of course, scale up to

realistic plan libraries, since generation involves interleaved
permutations. We expect that realistic plan libraries will re-
quire us to simulate the distributions rather than enumerate
them exhaustively. Samples from the distribution will be in-
expensive to generate, so this seems like a plausible strategy.

The ability to explore these distributions through simula-
tion is unlikely to be a sufficient engineering tool, however.
Realistically large plan libraries are going to give us distri-
butions whose event space will be too large to visualize and
compare effectively (except for interesting small cases such
as small numbers of known top level goals). Instead, we will
need to be able to use summary measures of similarity. We
suspect that measures of cross-entropy (Wikipedia 2009) be-
tween two distributions (estimated by simulation) are likely
to be useful for quantifying divergences:

H(p, q) =
∑

x

p(x) log q(x)

Note also that we can use conditional cross-entropy to mea-
sure divergences in specific, interesting parts of the proba-
bility space.

Ideally, we will not simply be comparing plan libraries
against each other, but also against corpora of observed ac-
tion sequences. If we have a substantial corpus, we can mea-
sure the entropy of a given plan library with respect to a
distribution estimated from the corpus. We can also com-
pare different plan libraries based on how well they model
the corpus, by measures such as comparing the conditional
probability of the corpus given each of the plan libraries.

Measuring the conditional probability of corpora given
different plan libraries may not be an adequate measure of
the incremental performance of a recognizer. Incremental
performance may be of the greater interest. Typically one
wishes to observe some partial action sequence in order to be
able to interact with it either positively (as in intelligent help
systems) or negatively (as in an AI opponent for a game).
Given an unlabeled corpus, one may still use a plan recog-
nizer like PHATT, with a generative model, to recognize the
prefix of an action sequence, and then either find the con-
ditional probability of the suffixes, or measure accuracy of
predictions of next actions or some other prediction.

Conclusion
In this paper we have illustrated some knowledge engineer-
ing challenges working with a probabilistic HTN model for
plan recognition. We have discussed the sources of these
challenges, notably in interactions between different parts of
the model. We have specifically shown how the model un-
derlying PHATT and Yappr gives rise to the these challenges
because of the way it combines the modeling of decompo-
sition planning and interleaving. We have proposed some
steps for exploring the implications of knowledge engineer-
ing decisions that we plan to explore in future work.
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