Planning for Temporally Extended Goals*

Fahiem Bacchus
Dept. of Computer Science
University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

Abstract

In planning, goals have been traditionally been viewed as
specifying a set of desirable final states. Any plan that trans-
formsthe current state to one of these desirablestatesisviewed
to be correct. Goals of this form are limited as they do not
allow usto constrain the manner in which the plan achieves
its objectives.

We propose viewing goals as specifying desirable sequences
of states, and a plan to be correct if its execution yields one
of these desirable sequences. We present a logical language,
a temporal logic, for specifying goals with this semantics.
Our languageis rich and allows the representation of arange
of temporally extended goals, including classical goals, goals
with temporal deadlines, quantified goals (with both universal
and existential quantification), safety goals, and maintenance
goals. Our formalism is simple and yet extends previous
approachesin this area.

We also present a planning algorithm that can generate correct
plans for these goals. This algorithm has been implemented,
and we provide some examples of the formalism at work. The
end result is a planning system which can generate plans that
satisfy anovel and useful set of conditions.

Introduction

One of the features that distinguishes intelligent agents is
their flexibility: generally they havetheability toaccomplish
atask inavariety of ways. Such flexibility isnecessary if the
agent is to be able to accomplish a variety of tasks under a
range of conditions. Yet thisflexibility a so poses aproblem:
how do we communicate to such an agent the task we want
accomplished in a sufficiently precise manner so that it does
what we really want.

Intheareaof planning, methodsand algorithmsarestudied
by which, given information about the current situation, an
intelligent agent can compose its primitive abilities so as
to accomplish a desired task or goal. The afore mentioned
problem then becomes the problem of designing sufficiently
expressive and precise ways of specifying goals.

Much of thework in planning hasdealt with goal sspecified
as conditionson afinal state. For example, we might specify

* Thiswork was supported by the by the Canadian government
through their NSERC and IRIS programs. Fahiem Bacchus also
wishesto thank the University of Toronto for hosting his sabbatical
leave during which much of this work was accomplished.

Froduald Kabanza
Dept. de Math et Informatique
Universite de Sherbrooke
Sherbrooke, Quebec
Canada, J1K 2R1

agoa asalist of literals. The intent of such goalsis that
the agent should find a plan that will transform the current
situation to a configuration that satisfies al of theliterasin
thegoal. Any plan that achieves such a satisfying fina state
isdeemed to be correct. However, there are many important
constraints we might wish to place on the agent’s behavior
that simply cannot be expressed using these semantics for
goas. The importance of specifying such constraints on
the agent’s plans has been recognized. For example, Weld
and Etzioni [WE94] present strong arguments for looking
beyond the simple achievement of afina state, and suggest
two additional constraintson plans, anotion of don’t-disturb
and restore.

In this paper we present a richer formalism for specify-
ing goals that borrows from work in verification [MP92],
and develop a planning agorithm for generating plans to
achieve such goas. Our formalism suggests a different way
of viewing goas in planning. Instead of viewing goals as
characterizing some set of acceptable final states and aplan
asbeing correct if it achieves one of these states, wewill view
agoa as specifying a set of acceptable sequences of states
and a plan as being correct if its execution resultsin one of
these sequences. As we will show our formalism for goals
subsumes the suggestions of Weld and Etzioni, except that
instead of viewing don’t-disturb and restore as constraints
on plans, we view them as simply being additional goals.

Our formalism alows us to specify a wide range of tem-
porally extended goals. This range includes classical goals
of achieving somefinal state; goalswith temporal deadlines;
safety and maintenance goals like those discussed by Weld
and Etzioni and others [HH93]; and quantified goals (both
universaly and existentially quantified). Furthermore, our
formalismisalogical languagethat carries with it a precise,
and quite intuitive, semantics. This latter is important, as
without a precise semantics for our goalswe will not be able
to analyze and verify exactly what it is our agents will be
accomplishing.

Temporally extended goals have previousy been exam-
ined in the literature. Haddawy and Hanks [HH93] have
provided utility models for some types of temporaly ex-
tended goas. Kabanzaet d. [Kab90, GK91, BKSD95] have
devel oped methodsfor generating reactive plansthat achieve
temporally extended goa's, ashas Drummond [Dru89]. Plan-

ning systems and theories specifically designed to deal with
temporal constraints (and sometimes other metric resources)
have aso been developed [Ver83, Wil88, AKRT91, CT91,
Lan93, PW94].

The main difference between these previous works and
what we present here, liesin our use of atemporal logic that
supports a unigue approach to computing plans, an approach
based on formula progression. The method of formula pro-
gression lends itself naturaly to the specification and uti-
lization of domain dependent search control knowledge. As
shown in our previous work [BK95], the approach of do-
main dependent search control offers considerable promise,
and has motivated our approach to dealing with temporally
extended goals. The other worksthat have constructed tem-
poral planners have utilized complex constraint management
techniques to deal with temporal information.

In [Kab90, GK91, BKSD95] similar tempora logics and
similar notions of formula progression have been utilized.
In this case the main difference is that here we address
classical plans, i.e., finite sequences of actions, while these
works have concentrated on generating reactive plans, i.e.,
mappings from states to actions (sometimes called universa
plans). Reactive plans have to specify an on-going interac-
tion between an agent and its environment, and thus pose a
quite distinct set of problems.

To generate plans that achieve the goal's expressed in our
formalism we present a planning agorithm that uses the
logical mechanism of formulaprogression. This notionwas
previoudly utilized in our TLPLAN system [BK95]. In fact
we have implemented the planning algorithm by extending
the TLPLAN system. TLPLAN is planning system whose key
feature is that it is able to utilize domain dependent search
control information.. This control isexpressed in atempora
logic that is alimited form of the logic presented here, and
it is utilized by the planner via the mechanism of formula
progression.

The planning algorithmwe devel opis sound and compl ete
and as we will demongtrate it is able to generate a range
of interesting plans. Further work is required, however,
to evaluate the planner’s performance on realistic planning
problems.

In the rest of the paper we will first provide the details
of the logic we propose for expressing goals. Thislogicis
atempord logic that is based on previous work by Alur et
al. [AFH91]. We then present our approach to planning,
provide examples to demonstrate the range of goalsthat our
system can cope with, and discuss the heuristic adequacy
of our approach to planning. Finally, we close with some
conclusions and discussion of future work.

Expressing goalsin MITL

We use alogicd language for expressing goals. Thelogicis
based on Metric Interval Tempora Logic developed by Alur
et a. [AFH91], but we have extended it allow first-order
guantification.

Syntax

Westart with acollection of n-ary predicate (including equal -
ity and the predi cate constants TRUE and FALSE) function and
constant symbols, variabl es, and the connectives — (hot) and
A (and). We add the quantifiers V and 3 and the modal
operators O (next) and U (until). From this collection of
symbolswe generate MITL, the language we use to express
goas. MITL is defined by the traditional rules for gener-
ating terms, atomic formulas, and Boolean combinations,
taken from ordinary first-order logic. In addition to those
formula formation rules we add: (1) if ¢ is aformulathen
0isO¢; (2) if ¢1 and ¢, areformulasand I is an interval
thensois ¢ Uy ¢ (thesyntax of intervalsis defined below);
and (3) if a(z) is an atomic formulain which the varigble
z is free, and ¢ is a formula then so are V[z:a(z)] ¢, and
J[z:a(z)] ¢.

Noticethat in our languagewe use bounded quantification.
Theatomic formulae« isused to specify the range over which
the quantified variable ranges. The precise semantics are
given below.

The syntax of intervalsis as one would expect. The al-
lowed intervals are al intervals over the non-negative resl
line, and we specify an interval by giving itstwo endpoints,
both of which are required to be non-negative numbers. To
allow for unbounded intervalswe allow theright endpoint to
be co. For example, [0, c0) specifies the interval of num-
bers z such that 0 < =z, (5.1,6.1] specifies the interval
5.1 < z < 6.1, and [5, 5] specifiestheinterval 5 <z < 5
(i.e, thepoint z = 5).

Although non-negativeinterval sarethe only onesallowed
intheformulasof MITL, inthe semantics and a gorithmswe
will need to utilize shifted intervals and to test for negative
intervals. For any interval I let T + » bethe set of numbers
z suchthat z — » € I, I — r be the set of numbers z such
that z + » € I, and I < 0 betrueiff al numbersin I are
less than 0. For example, (5, c0) + 2.5 is the new interval
(7.5,00), (0,2) — 2.5 isthe new interval (—2.5, —0.5), and
(—2.5,—0.5) < 0 istrue.

Finally, weintroduce=- (implication), and v (disjunction)
as standard abbreviations. We aso introduce the temporal
modalitieseventualy < and always O as abbreviationswith
Or¢g = TRUEUr ¢, and Op¢p = —Or—¢. We will dso
abbreviateintervasof theform (r, oo) and[0, r),€.9., C(r o)
will be written as &, and O 4) @ O<4. Finaly, we will
often omit writing the interval [0, oc], e.g., we will write
$1U[0,00] $2 @8 $1 U .

Semantics

We intend that goals be expressed as sentences of the lan-
guage MITL. As hinted in the introduction such formulas
are intended to specify sets of sequences of states. Hence, it
should not be surprising that the underlying semantics we as-
signto theformulas of MITL bein terms of state sequences.

!The temporal modalities with the interval [0, oo] correspond
precisely to the traditional untimed modalities of Linear Temporal
Logic [Eme90].

A mode for MITL is atimed sequence of states, M =
(S0y+-++8n,..-). In particular, a mode is an infinite se-
guence of states, and each state isafirst-order model over a
fixed domain D. That is, each state s; assigns a denotation
for each predicate and function symbol over the domain D.
Furthermore, there is a timing function 7 that maps each
dtate s; in M to a point on the non-negative real line such
that for al 4, 7(s;) < T(s;4+1) and for al real numbers
there exists an i such that 7 (s;) > r. This means that time
isonly required to be non-decreasing, not strictly increasing.
Timecan stall at asinglepoint for any finite number of states.
Eventually, however, time must increase without bound.

Let V be avariable assignment, i.e., a mapping from the
variables to elements of D; ¢, ¢1, and ¢, be formulas of
MITL; and M bean MITL modd. The semantics of MITL
are then defined by the following clauses.

e (M,s;,V) |E ¢, when ¢ is atempord (i.e., contains no
tempora modalities) and quantifier free, iff (s;, V) = 4.2

L] <M, 8,,V> 'Z O¢ iff <M, 3,’+1,V> 'Z ¢

. <M, SZ,V> 'Z ¢1 Ur ¢ iff there exists S; with T(S]) S
I+ T (s;) suchthat (M, s;, V) |= ¢ and for al s; with
1< k< jwehave(M,s;, V) E ¢1.

o (M,s;,V) | V[z:a(z)] ¢ iff for al d € D such that

(i, V(z/d)) E a(z) wehave (M, s;, V(z/d)) E ¢.

o (M,s;,V) = z:a(z)] ¢ iff thereexistsd € D such that

(30, V(2/d)) E afz) and (M, s;, V(z/d)) [¢.

Itisnot difficult to show that any formulaof MITL that has
no freevariables, called asentenceof MITL, hasatruthvalue
that is independent of the variable assignment V. Given a
sentence ¢ of MITL we say itistrueinamodel M, M | ¢,
iff (M, s0) = ¢.

Since sentences of MITL are either true or false on any
individua timed sequence of states, we can associate with
every sentence a set of sequences. those sequences on which
itistrue. We express god s as sentences of MITL, hence we
obtain our desired semantics for goas: a set of acceptable
sequences.

Discussion
Intuitively, the temporal modalities can be explained as fol-
lows. The next modality O simply specifies that something
must be true in the next state. Its semantics do not depend
on thetime of the states. It isimportant to realize, however,
that what it requires to be true in the next state may itself
be a formula containing temporal modalities. MITL getsits
expressive power fromitsability to nest tempora modalities.
The until modality is more subtle. The formula ¢y Uy 7
¢, for example, requiresthat ¢, betruein some state whose
timeis between 5 and 7 unitsinto the future, and that ¢, be
truein all states until we reach astate where ¢, istrue. The
eventually modality thus takes on the semantics that < ;¢
requires that ¢ be true in some state whose time liesin the

ZNote that s; is a first-order model, so the relationship
“(si, V) |= ¢” is defined according to the standard rules for first-
order semantics.

interval I, and O;¢ requiresthat ¢ betrueinall stateswhose
timeliesin I.

Turning to the clauses for the bounded quantifiers we see
that the range of the quantifier is being restricted to the set
of domain elements that satisfy a. If a istrue of al domain
individuals, then the bounded quantifiers become equiva
lent to ordinary quantification. Similarly, we could express
bounded quantification with ordinary quantifiers using the
syntactic equivalences V[z:a(z)] ¢ = Vz.a(z) = ¢ and
J[z:a(z)] ¢ = Fz.a(z) A ¢. We have defined MITL to use
bounded quantification because we will need to place finite-
ness restrictionson quantification when we do planning.

Planning
Planning Assumptions and Restrictions

Now we turn to the problem of generating plans for goals
expressed in the language MITL. First we specify the as-
sumptions we making. (1) We have as input a complete
description of the initia state. (2) Actions preserve this
completeness. That is, if an actionisapplied to acompletely
described state, then the resulting state will also be com-
pletely described. (3) Actions are deterministic; that is, in
any world they must produce a unique successor world. (4)
Plansare finite sequences of actions. (5) Only the agent who
is executing the plan changes the world. That is, there are
no other agents nor any exogenous events. (6) All quantifier
bounds, i.e., the atomic formulas a(z) used in the defini-
tion of quantified formulas, range over afinite subset of the
domain.

These assumptionsallow usto focus on a particul ar exten-
sion of planning technology. They are essentially the same
assumptionsas made in classical planning. For example, the
assumption that actions preserve completenessisimplied by
the standard STRIPS assumption.

It is possibleto weaken our assumptions of completeness.
Incomplete state descriptionswill suffice aslong as they are
complete enough to (1) determine the truth of the precon-
ditions of every action and (2) determine the truth of al
atempora subformulas of the goal formula. The price that
is paid however is efficiency, instead of a database lookup,
theorem proving may be required to determine the truth of
these two items. However, more conservative notions of in-
completeness like locally closed worlds [EGW94] could be
utilized in our framework without imposing a large compu-
tational burden.

Also, it should be made clear that restricting ourselves to
determini sti c acti ons does not mean actions cannot have con-
ditiond effects. Infact, the planner we implemented handles
full AbL conditional actions [Ped89] including actions with
digunctive and existentially quantified preconditions.

Plan Correctness

Given agoal g expressed as a sentence of MITL we want to
develop a method for generating plans that satisfy g. Sen-
tences of MITL are satisfied by the timed state sequences
described above. Hence, to determine whether or not a plan
satisfies ¢ we must provide a semantics for plansin terms of
themodelsof MITL.

Inputs: A state s;, with formula label ¢, and atime duration A to
the successor state.
Output: A new formula ¢+ representing the formula label of the
successor state.
Algorithm Progresq¢,s;,A)
Case
1. ¢ containsno temporal modalities:
ifsil=¢ ¢t :=TRUE
else ¢t := FALSE

¢ =1 ot = —Progress(¢1, 55, A)
¢ = Od¢u: ¢t =
¢ = ¢1 Ur ¢a:

ifI<o ¢t = FALSE

eseif 0 € I ¢ := Progresg(¢a, i, A)

agkrwn

v (ProgrﬁqslvsivA) A ¢1 Ur—a ¢2)

else Progres(¢1, si, A) A1 Ur—a ¢2

6. ¢ =V[z:a]g: ¢t := /\{c:si|:a(c)} Progress(¢1(z/¢), si, A)
7. ¢ =Tzl = \/{C:Si':a(c)} Progress(¢1(z/¢), si, A)

Table 1: The progression algorithm.

Since actionsmap statesto new states, any finite sequence
of actionswill generate afinite sequence of states: the states
that wouldarise astheplanisexecuted. Furthermore, wewill
assume that part of an action’sspecification isaspecification
of its duration, which is constrained to be greater than or
equa to 0. This means that if we consider sq to commence
at time 0, then every state that is visited by the plan can be
given atime stamp. Hence, aplan givesriseto afinitetimed
sequence of states—almost a suitable model for MITL.

The only difficulty is that models of MITL are infinite
sequences. Intuitively, we intend to control the agent for
some finite time, up until the time the agent completes the
execution of itsplan. Since we are assuming that the agent
isthe only source of change, once it has completed the plan
the final state of the plan idles, i.e., it remains unchanged.
Formally, wedefinetheMITL model correspondingto aplan
asfollows:

Definition 1 Let plan P be the finite sequence of actions
(a1,...,an). L&t S = (sq,...,8,) be the sequence of
states such that s; = a;(s;—1), ad s is the initid state.
S is the sequence of states visited by the plan. Then the
MITL modd corresponding to P and s is defined to be
(S0y+-+18n,Sn,---), 1.6, S with the fina state s, idled,
where T(s;) = T(si—1) + duration(a;), 0 < i < n,
T (s0) = 0, andthetime of the copiesof s,, increaseswithout
bound.

Therefore, every finite sequence of actions we generate
corresponds to a unique model in which the final state is
idling. Given a goa expressed as a sentence of MITL we
can determine, using the semantics defined above, whether
or not the plan satisfies the goal.

Definition 2 Let P be a plan, g be a goa expressed as a
formulaof MITL, so betheinitia state, and M be the model
corresponding to P and sq. P isacorrect plan for g given
s iff M = g.

b =1 A2t ¢T := Progress(¢1, si, A) A Progres(¢a, s, A)

Generating Plans

We will generate plans by adopting the methodol ogy of our
previous work [BK95]. In particular, we have constructed
aforward-chaining planning engine that generates linear se-
guences of actions, and thus linear sequences of states. As
these linear sequences of states are generated we incremen-
tally check them against the goal. Whenever we can show
that achieving the goal is impossible along a particular se-
guence we can prune that sequence and al of its possible
extensions from the search space. And we can stop when
we find a sequence that satisfies the goal. The incremental
checking mechanismisaccomplished by thelogica progres-
sion of the goal formula.

Formula Progression The technique of formula progres-
sion works by labeling the initia state with the sentence
representing the goal, call it g. For each successor of the
initia state, generated by forward chaining, a new formula
label is generated by progressing the initial state’s label us-
ing theagorithmgivenin Table 1. Thisnew formulaisused
to label the successor states. This process continues. Every
time a state is expanded during planning search each of its
successors is given anew label generated by progression.

Intuitively a state's label specifies a condition that we are
looking for. That is, we want to find a sequence of states
starting from thisstate that satisfiesthelabel. The purpose of
the progression algorithmisto updatethislabel asweextend
the state sequence. It takes as input the current state and the
duration of the action that yields the successor state.

The logica relationship between the input formula and
output formula of the algorithm is characterized by the fol-
lowing proposition:

Proposition 3 Let M = (sg, s1,...) be any MITL modd.
Then, we have for any formula ¢ of MITL, (M, s;) = ¢ if

andonly if (M, siy1) = Progress(¢, si, T(si4+1) — T (si))-

This proposition can easily be proved by utilizing the def-
inition of MITL semantics.

Say that we labd the start state, sq, with the formula
¢, and we generate new labels using the progression al-
gorithm. Furthermore, say we find a sequence of states,
S = (s,s',s2,...), sarting at state s that satisfies s'slabel.
Then a simple induction using Proposition 3 shows that the
sequence leading from sq to s followed by the sequence S,
i.e, (so,...,s, s 5% ...), sttisfies ¢. The progression al-
gorithm keeps the labels up to date: they specify what we
are looking for given that we have arrived where we are.

From thisinsight we can identify two important features
of the formula progression mechanism. Firgt, if we find any
state whoseidling satisfiesitslabel, we have found a correct
plan.

Proposition 4 Let (s, s1,- .., sn) be a sequence of states
generated by forward chaining fromtheinitial state sq to s,, .
For each state s; let itslabel be 4(s;). Let the labels of the
states be computed via progression, i.e., for each state s; in
the sequence

£(si+1) = Progress(£(si), si, T (si+1) — T (si)).

Inputs: A state s, and aformula ¢.

Output: Trueif the state sequence(s, s, .. .}, wheretime increases
without bound, satisfies ¢. False otherwise.

Algorithm Idlg(¢,s)

Case
1. ¢ containsno temporal modalities:
ifsE=d¢ return TRUE
else return FALSE
2. ¢p=¢1 N2 returnidlegey, s) A ldle(dz, s)
3. ¢ =-¢s: return —~ldle(¢1, s)
4, ¢ = O¢: return Idle(¢q,)
5 ¢ =¢1 Ur¢a:
ifI<0 return FALSE

elseif 0 € I return Idlg(¢2, s)

else return Idle(¢q, s) A ldlE(¢2, s)
6. ¢ =V[z:a]p1: return /\{C:s':a(c)} Idieg(¢1(z/¢), s)
7. ¢ =3[z:a]$1: return \/{C:s':a(c)} Idieg(¢1(z/¢), s)

Table 2: Theidling agorithm.

Then M = (s0,,-- -1 80, Sny---) = £(50) iIff (s, 8n,...) E
£(sn)-

The proof of thispropositionfollowsdirectly from Propo-
sition 3.

Since £(s¢) is aformula specifying the goal, this propo-
sition shows that the plan leading to s, satisfies the goal.
Hence, if we have a method for testing for any state s and
any formula ¢ € MITL whether or not (s, s,...) &= ¢,
we have a termination test for the planning algorithm that
guarantees soundness of the algorithm. We will describe an
appropriate method bel ow.

Furthermore, as long as the search procedure used by the
algorithm eventually examines al finite sequences of states
the planning a gorithm will aso be compl ete.

The second feature of formulaprogressionisthat it alows
usto prunethesearch space withoutlosing completeness. As
we computethe progressed |abel wesimplify it by processing
all TRUE and FaLsE subformulas. For example, if the label
¢ A TRUE is generated we smplify thisto ¢. If any state
receives the label FALSE we can prune it from the search
space, thus avoiding searching any of its successors. From
Proposition 3 we know that thislabel specifies areguirement
on the sequences that start at this state. No sequence can
satisfy the requirement FALSE, hence no sequences starting
from this state can satisfy the goa and this state and its
successors can be safely pruned from the search space.

Termination As indicated above, we can detect when a
plan satisfies the goa if we can detect when an idling state
satisfies itslabel. This computation is accomplished by the
algorithm givenin Table 2.

Proposition 5 Idlg(¢,s) returns TRUE if and only if
(s,8,...) E ¢. Thatis, Idledetectsif anidling state satisfies
a formula.

The Planning Algorithm Given the pieces developed in
the previous sections we specify the planning a gorithm pre-
sented in Table 3. The algorithm labelstheinitial state with
the goal and searches among the space of state-formulapairs.
We test for termination by running the Idlealgorithm on the

Inputs: An initial state so, and a sentence g € MITL specifying
the goal.
Returns: A plan P consisting of finite sequenceof actions.
Algorithm Plan(g,s)
1. Open « {(g,s0)}.
2. _While Openis not empty.
2.1 (¢, s) « Remove an element of Open.
2.2 if Idle(¢,s) Return ((¢, s)).
2.3 Successors + Expand(s).
24 For al (s*,a) € Successors
24.1 ¢* + Progresy¢, s, duration(a)).
24.2 if ¢ # FALSE
2.4.2.1 Parent((¢pT, s1)) (¢, s).
2.4.2.2 Open +Open U {(s*,¢1)}.

Table 3: The planning agorithm.

state’'sformula. To expand a state-formula pair we apply al
applicable actions to its state component, returning all pairs
contai ning asuccessor state and the action that produced that
state (thisis accomplished by Expand(s)). We then compute
the new labels for those successor states using the Progress
algorithm.

It should be noted that we cannot treat action sequences
that visit thesamestateasbeing cyclic. If weareonly looking
for apath to afina state, asin classical planning, we could
eliminate such cycles. Goasin MITL, however, can easily
require visiting the same state many times. Nevertheless,
we can view visiting the same state-formulapair as acycle,
and optimize those cycles using the standard techniques.?
Intuitively, when we visit the same state-formula node we
have arrived at a point in the search were we are searching
for the same set of extensionsto the same state.

Proposition 6 The planning algorithm is sound and com-
plete. Thatis, it producesa planthatiscorrect for g given s
(Definition 2), and so long as nodes are selected from Open
in such a manner that every node is eventually selected, it
will find a correct planif one exists.

This propositionfollows from the soundness of our termina-
tion test (Proposition 4).

We have implemented the planning agorithm as an ex-
tension of the TLPLAN system [Bac95]. This alowed us to
utilize many of the features aready built into the TLPLAN
system, including full support of the AbL formalism [Ped89]
for specifying actions.

Example and Empirical Results
Types of Goals

The domain we used isavariant of the classical STRIPS robot
rooms domain [FN71]. The configuration of the rooms is
illustrated in Figure 1. In this domain there are objects and
a robot, which can be located at any of the 2 locations in
the corridor, C'1 or C4, or any of the4 rooms R1, ..., R4.
The robot can move between connected locations, it can

3For example, we can eliminate that node or search from it
again if the new path we have found to it is better than the old
path. These considerations will determine how we decide to set
Parent((¢*, s1)) in step2.4.2.1

[| Operator | Precondition | Adds | Deletes I
open(d) at(robot, 7z) opened(?d) closed(?d)
connects(?d, ?z, y)
closed(?d)
door(?d)
close(?d) at(robot, 7z) closed(?d) opened(?d)
connects(?d, ?z, y)
opened(?d) door(?d)
grasp(?o) at(robot, 1) holding(?0) handempty(?d)
at(?o,?z)
handempty
object(?0)
release(?o) holding(?0) handempty holding(?o)
move(?z, 1y) at(robot, 1z) at(robot, 7y) at(robot,)
connects(?d, ?z, y) holding(?o) holding(?0)
opened(?d) = at(?o, 7y) = at(?o, ?z)

Table 4: Operators for Robot Room domain.

open and close doors (indicated as gaps in the walls), and
it can grasp and carry one object at atime. The operators
that characterize its capabilities are shown in Table 4. In
this table variables are preceded by a question mark “?7”.
Also, the move operator isan ADL operator with conditional
effects. For al objects that the robot is holding it updates
their position. Thisisindicated in Table 4 by the notation
f1 = Lintheadd and deletecolumns: theliteral Zisadded or
deletedif f; holds. The duration of most of the actionsis set
to 1. Our implementation allows us to set the duration of an
action to be dependent on theinstantiation of its parameters.
In particular, we set the duration of move(z,y) to be 1,
except for move(C'1, C'4) which has duration 3.

Any initia state for thisdomain must specify the location
of the robot and the existence and location of any objects
in the domain. It must also specify whether each door is
opened or closed. The doors connect theroomsto each other
and to the corridor locations, and a set of connects relations
must be specified, eg., connects(D1,C1, R1). Door D1
connectsthe corridor location C'1 and R1, door D4 connects
C4 and R4, and the doors Dij connect rooms Ri and Rj
(g € {1,2,3)).

Finally, the two corridor locations are connected by a
“corridor” which is dways “open”. So literas of the form
connects(corridor, C1,C4), and opened(corridor), must
also be present intheinitia state description.

R3 R4

C1 C4
Figure 1: Robot Room domain

Classical Goals: Classical goals can easily be encoded
as untimed eventualities that hold forever. For example,
the classical goa {at(robot, C'1), at(obj1, R4)} expressed
as a set of literals, can be encoded as the MITL formula
<O(at(robot, C1) A at(objl, R4)). Any classical goa can

be encoded in this manner. Given the semantics of plans as
idlingtheir final state, thisformulawill be satisfied by aplan
only if thefind state satisfies the goal.

More generaly we can specify a classica “achieve a fi-
nal state” goa by enclosing any atemporal formula of our
language in an eventuaity. We can specify digunctive
goals, negated conditions, quantified goals, etc. Theformula
&(3[z:object(z)] at(z, R4) V at(robot, R4)), for example,
specifies the god state where some object or the robot isin
room R4.

Safety and Maintenance Goals: In[WE94] Weld and Et-
zioni discuss the need for safety conditionsin plans. Such
conditionshave a so been studiedintheverification literature
[MP92]. MITL can express awiderange of such conditions.
Maintenance goas (e.g., [HH93]) which involve keeping
some condition intact, are very similar.

Weld and Etzioni propose two specific constructions,
don't-disturb and restore, as a start towards the genera god
of expressing safety conditions. Both of these constructions
are easily encoded as goalsin MITL.

Don't-disturb specifies a condition ¢(z). A plan is
defined to satisfy a don't-disturb condition if during its
execution no instantiation of ¢(z) changes truth value.
Such conditions are easily specified by conjoining the
formula Vz.¢(z) = DO¢(z) to the origina goa.* For
example, the goal <O(at(robot, C1) A at(objl, R4)) A
V[z:0pened(z)] Dopened(z), can only be satisfied by a plan
that does not disturb any open doors.

Restore also specifies acondition ¢(z). A plan satisfiesa
restore condition if it tidies up after it has finished. That is,
at theend of itsplanit must append anew plan to restorethe
truth of dl instantiationsof ¢(z) that heldintheinitid state.

We can specify restore goalsin MITL by conjoining the
formulaVz.¢(z) = <O¢(z), which specifies that the final
state of the plan must satisfy al instantiationsof ¢ that held

*We must appropriately rewrite Vz.¢(z) in terms of bounded
quantification. Also it is not difficult to see that multiple variables
in ¢ can be handled by additional quantifiers. Similar remarks hold
for encoding restore.

in the initial state.® Notice that the semantic distinction
between restore and don't-disturb goalsis made clear by our
formalism. Restore goals use <O while don't-disturb goals
use d. That is, restore goas alow the violation of ¢ during
the plan, as long as these conditions are eventually restored
inthefina state.

Both of these conditionsare limited specia cases. MITL
can express much more than this. For example, say that
we want to constrain the robot to close doors that it opens.
We cannot place a don't-disturb condition closed(z), asthis
would prohibit the robot from moving into rooms where the
doors are closed. If we specify this as a restore condition,
therobot might leave adoor opened for avery longtime until
it has finished therest of itsplan. InMITL, however we can
use theformula

O(V[z, y, z:connects(z, z, y)] 1)

at(robot, z) A closed(z) A Oopen(z)
= OQat(robot, y) A OOOClosed(z))

This formula specifies that if the robot opens a closed
door (closed(z) A O(open(z))), then it must go through
the door (OOat(robot, y)) and then it must close the door
(OO Oclosed(z)). Hence, therobot isforced to be tidy with
respect to doors: it only opens doorsfor the purpose of mov-
ing through them, and it closes the doors it opens behind
it.

Timing Deadlines: MITL is also capable of expressing
goas with timing conditions. For example O 19¢ requires
the condition ¢ be achieved within ten time units.

Empirical Results

We have tested different goas from each of the cate-
gories mentioned above. Most of the plans were generated
from the initial state in which at(obj1, R1), at(obj2, R2),
at(robot, C1), handempty, object(obj1), object(obj2), and
all of the doors are opened.

G1: From this initial state we set the goa to
be <O(at(robot, C1) A at(objl, R2)). This corre-
sponds to the classical goal {at(robot, C'1), at(obj1, R2)}.
The planner generates the plan: move(C1, R1),
grasp(obj1), move(R1, R2), release(objl), move(R2, R1),
move(R1, C1). It took the planner 22 sec., expanding 636
worldsto find thisplan.®

G2: From the same initial state we set the goad to be
<O(3J[z:object(z)] at(z, R3) A handempty). Now the plan-
ner generates the plan: move(C1, R1), move(R1, R2),
grasp(02), move(R2, R3), rdease(02). Inthiscaseit has
generated a plan for a quantified goal. This plan takes the
planner 3 sec., expanding 126 worldsto find the plan.

5 When we add thisformula as a conjunct to the original goal we
force the planner to find a plan that satisfiesthe restore. If we want
to give restore conditions lower priority, as discussed in [WE94],
we could resort to the techniques of replanning suggested there.

6 Timings are taken on a SPARC station 20, and a breadth first
strategy was used so asto find the shortest plans.

G3: Now we change the initial state so all of the doors
are closed. We set the goa to be CO(at(robot, C1) A
at(obj1, R2)) conjoined with Formula 1. This is simply
aclassica goa with an additional constraint on the robot to
ensure it closes doors behind it. For this goa the planner
generates the plan open(D1), move(C1, R1), close(D1),
grasp(01), open(D12), move(R1, R2), close(D12),
release(01), open(D12), move(R2, R1), close(D12),
open(D1), move(R1, C1), close(D1). This plan took the
planner 77 sec., expanding 1571 worlds, to find.

G4: We reset the initial state to one where all of the
doors are open and set the goal to be O ygat(0bj1, R4) A
O>sat(0bj2, R3) A V[z:opened(z)] Dopened(z). Thisisa
goa with atight deadline. The robot must move directly to
R2 and move obj2 to R3. If it stopsto grasp obj1 aong the
way it will fail to get obj2into R3 ontime. Alsowe conjoin
asubgoa of not closing any open doors. Aswe will discuss
below this safety constraint acts as a form of search con-
trol, it stops the planner pursing useless (for thisgoal) close
actions. The planner generates the plan: move(C1, R1),
move(R1, R2), grasp(02), move(R2, R3), release(02),
move(R3, R2), move(R2, R1), grasp(0O1), move(R1, R2),
move(R2, R3), move(R3, R4). This plan took the planner
8 sec., expanding 284 worlds, to find.

G5: If we change the time deadlines in the previ-
ous goa and set the goa it to be Osqat(objl, R4) A
O>20at(0bj2, R3) A V[z:0pened(z)] Dopened(z) The plan-
ner generates the plan: move(C1, R1),
grasp(01), move(R1, R2), move(R2, R3), move(R3, R4),
release(01), move(R4, R3), move(R3, R2), grasp(02),
move(R2, R3). It took the planner 120 sec. to find this
plan, expanding 1907 worlds on the way.

Search Control

Although our planner can generate an interesting range of
plans, by itsdlf it is not efficient enough for practical prob-
lems. For example, when it isonly given the goa of achiev-
ing some final state, it has to resort to blind search to find a
plan. Similarly, it has no special mechanisms for planning
for quantified goals, it simply searches until it finds a state
satisfyingthegoal. Safety goal s offer better performance, as
such goals prune the search space of sequences that fasify
them. Thisis why we included safety conditions on open
doorsin the fourth and fifth tests above: they alow the plan-
ner tofind aplan faster. Againfor goa swith complex timing
congtraints, the planner does not utilize any specia tempora
reasoning.

The major advantage of our approach lies in the ability
of the planner to utilize domain dependent search control
information. Such information can be expressed asformulas
of MITL and conjoined withthe goal. We have explored this
approach to search control in [BK95] where we demonstrate
that is often possible to construct polynomial time planners
using quite simple search control knowledge. We know of
no other approach to increasing the efficiency of planners

that has been able to produce polynomial time behavior in
these domains.

Asasimpleillustration of the power of thisusing search
control consider thefollowingtrivia search control formula:

O (V[w:at(robot, z)] =(O—at(robot,) A OOat(robot,))
A Y[z:0bject(z)] —=(—holding(z) A Oholding(z)
A OOﬁholding(z)))

If we conjoin this formulawith any other goal, the planner
will prune sequences in which (1) the robot grasps an object
and then immediately releases it, and (2) the robot moves
away from alocation and then immediately moves back. For
this domain these sequences serve no purpose even in plans
where the robot must visit the same state more than once.”

Conjoining this formula with the example goals given
above we abtain the following speedups.

|| Example | Time | World | New-Time | New-Worlds ||

1 22 636 12 405
2 3 126 2 93
3 77 1571 | 18 304
4 8 284 1 38
5 120 | 1907 | 7.75 199

Thecolumnsgivetheplanningtimeand thenumber of worlds
expanded, beforeand after weadd thesearch control formula.
Note in particular, the speedups obtained on the harder prob-
lems. Furthermore, it should be noted that thisis only the
simplest and most obvious of control formulas for this do-
main.

References

Rajeev Alur, Tomas Feder, and Thomas Henzinger.
The benefits of relaxing punctuality. In Tenth Annual
ACM Symposiumon Principlesof Distributed Comput-
ing (PODC 1991), pages 139-152, 1991.

[AKRT91] J. Allen, H. Kautz, Pelavin R., and J. Tenenberg. Rea-
soning about Plans. Morgan Kaufmann, San Mateo,
CA, 1991.

Fahiem Bacchus. Tlplan (version 2.0) user’'s manual.
Available via
the URL ftp://logos.uwaterloo.ca:/pub/bacchus/tiplan-
manual.ps.Z, 1995.

Fahiem Bacchus and Froduald Kabanza. Using tem-
poral logic to control search in a forward chaining
planner. In Proceedings of the 3rd European Work-
shop on Planning, 1995. Available via the URL
ftp://logos.uwaterloo.ca:/pub/tlplan/tiplan.ps.Z.

[BKSD95] M.Barbeau, F. Kabanza, and R. St-Denis. Synthesizing
plant controllers using real-time goals. In Proc. Thir-
teenth International Joint Conferenceon Artificial In-
telligence (1JCAI ' 95), pages 791-798, 1995.

K. Currie and A. Tate. O-plan: the open planning
architecture. Artificial Intelligence, 52:49-86, 1991.

[AFH91]

[Bacos]

[BK95]

[CTO1]

"In general, in order to achieve some timed goals we may need
to allow the robot to wait. But, in that case it is more effective to
introduce a specific wait action and still outlaw pointless cycles.

[Drugg]

[EGW94]

[Eme90]

[FN71]

[GK91]

[HH93]

[Kabo0]

[Lan93]

[MP92]

[Ped8g)]

[PW94]

[Sch87]

[Vers3]

[WE94]

[Wil88]

M. Drummond. Situated control rules. In Proc. First
International Conference on Principles of Knowledge
Representation and Reasoning (KR ’'89), pages 103—
113. Morgan Kaufmann, 1989.

O. Etzioni, K. Golden, and D. Weld. Tractable closed
world reasoning with updates. In Principles of Knowl-
edge Representation and Reasoning: Proc. Forth Inter-
national Conference (KR '94), pages 178-189, 1994.

E. A. Emerson. Tempora and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B, chapter 16, pages 997-1072. MIT,
1990.

Richard Fikes and Nils Nilsson. Strips: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence, 2:189-208, 1971.

P. Godefroid and F. Kabanza. An efficient reactive plan-
ner for synthesizing reactive plans. In Proc. National
Conferenceon Artificial Intelligence (AAAI ' 91), pages
640-645, 1991.

P. Haddawy and S. Hanks. Utility models for goal-
directed decision-theoretic planners. Technical Report
93-06-04, University of Washington, 1993. Technical
Report.

F. Kabanza. Synthesis of reactive plans for multi-path
environments. In Proc. National Conference on Artifi-
cial Intelligence (AAAI ' 90), pages 164—-169, 1990.

A. Lansky. Localized planning with diversified plan
construction methods. Technical Report T.R. FIA-93-
17, NASA Ames Research Center, 1993. Technical
Report.

Zohar Manna and Amir Pnueli. The temporal logic
of reactive and concurrent systems: Specication.
Springer-Verlag, New York, 1992.

E. Pednault. ADL: Exploring the middle ground be-
tween STRIPSand the situation calculus. In Proc. First
International Conference on Principles of Knowledge
Representation and Reasoning (KR ’89), pages 324—
332, 1989.

J. Scott Penberthy and Daniel Weld. Temporal planning
with continuouschange. In Proc. National Conference
on Artificial Intelligence (AAAI ' 94), pages 1010-1015.
Morgan Kaufmann, 1994.

M. J. Schoppers. Universal plans for reactive robots
in unpredictable environments. In Proc. Tenth Interna-
tional Joint Conference on Artificial Intelligence (13-
CAl ’87), pages 1039-1046, 1987.

S. Vere. Planning in time: Windows and durations for
activities and goals. |EEE Trans. on Pattern Analysis
and Machine Intelligence, 5, 1983.

Daniel Weld and Oren Etzioni. Thefirst law of robotics
(acall to arms). In Proc. National Conferenceon Arti-
ficial Intelligence (AAAI ' 94), pages 1042—-1047,1994.

D. Wilkins. Practical Planning. Morgan Kaufmann,
San Mateo, CA, 1988.

