
Planning for Temporally Extended Goals
�

Fahiem Bacchus
Dept. of Computer Science

University of Waterloo
Waterloo, Ontario
Canada, N2L 3G1

Froduald Kabanza
Dept. de Math et Informatique

Universite de Sherbrooke
Sherbrooke, Quebec

Canada, J1K 2R1

Abstract

In planning, goals have been traditionally been viewed as
specifying a set of desirable final states. Any plan that trans-
forms the current state to one of these desirable states is viewed
to be correct. Goals of this form are limited as they do not
allow us to constrain the manner in which the plan achieves
its objectives.
We propose viewing goals as specifying desirable sequences
of states, and a plan to be correct if its execution yields one
of these desirable sequences. We present a logical language,
a temporal logic, for specifying goals with this semantics.
Our language is rich and allows the representation of a range
of temporally extended goals, including classical goals, goals
with temporal deadlines, quantified goals (with both universal
and existential quantification), safety goals, and maintenance
goals. Our formalism is simple and yet extends previous
approaches in this area.
We also present a planning algorithm that can generate correct
plans for these goals. This algorithm has been implemented,
and we provide some examples of the formalism at work. The
end result is a planning system which can generate plans that
satisfy a novel and useful set of conditions.

Introduction
One of the features that distinguishes intelligent agents is
their flexibility: generally they have the ability to accomplish
a task in a variety of ways. Such flexibility is necessary if the
agent is to be able to accomplish a variety of tasks under a
range of conditions. Yet this flexibility also poses a problem:
how do we communicate to such an agent the task we want
accomplished in a sufficiently precise manner so that it does
what we really want.

In the area of planning, methods and algorithms are studied
by which, given information about the current situation, an
intelligent agent can compose its primitive abilities so as
to accomplish a desired task or goal. The afore mentioned
problem then becomes the problem of designing sufficiently
expressive and precise ways of specifying goals.

Much of the work in planning has dealt with goals specified
as conditions on a final state. For example, we might specify�

This work was supported by the by the Canadian government
through their NSERC and IRIS programs. Fahiem Bacchus also
wishes to thank the University of Toronto for hosting his sabbatical
leave during which much of this work was accomplished.

a goal as a list of literals. The intent of such goals is that
the agent should find a plan that will transform the current
situation to a configuration that satisfies all of the literals in
the goal. Any plan that achieves such a satisfying final state
is deemed to be correct. However, there are many important
constraints we might wish to place on the agent’s behavior
that simply cannot be expressed using these semantics for
goals. The importance of specifying such constraints on
the agent’s plans has been recognized. For example, Weld
and Etzioni [WE94] present strong arguments for looking
beyond the simple achievement of a final state, and suggest
two additional constraints on plans, a notion of don’t-disturb
and restore.

In this paper we present a richer formalism for specify-
ing goals that borrows from work in verification [MP92],
and develop a planning algorithm for generating plans to
achieve such goals. Our formalism suggests a different way
of viewing goals in planning. Instead of viewing goals as
characterizing some set of acceptable final states and a plan
as being correct if it achieves one of these states, we will view
a goal as specifying a set of acceptable sequences of states
and a plan as being correct if its execution results in one of
these sequences. As we will show our formalism for goals
subsumes the suggestions of Weld and Etzioni, except that
instead of viewing don’t-disturb and restore as constraints
on plans, we view them as simply being additional goals.

Our formalism allows us to specify a wide range of tem-
porally extended goals. This range includes classical goals
of achieving some final state; goals with temporal deadlines;
safety and maintenance goals like those discussed by Weld
and Etzioni and others [HH93]; and quantified goals (both
universally and existentially quantified). Furthermore, our
formalism is a logical language that carries with it a precise,
and quite intuitive, semantics. This latter is important, as
without a precise semantics for our goals we will not be able
to analyze and verify exactly what it is our agents will be
accomplishing.

Temporally extended goals have previously been exam-
ined in the literature. Haddawy and Hanks [HH93] have
provided utility models for some types of temporally ex-
tended goals. Kabanza et al. [Kab90, GK91, BKSD95] have
developed methods for generating reactive plans that achieve
temporally extended goals, as has Drummond [Dru89]. Plan-

ning systems and theories specifically designed to deal with
temporal constraints (and sometimes other metric resources)
have also been developed [Ver83, Wil88, AKRT91, CT91,
Lan93, PW94].

The main difference between these previous works and
what we present here, lies in our use of a temporal logic that
supports a unique approach to computing plans, an approach
based on formula progression. The method of formula pro-
gression lends itself naturally to the specification and uti-
lization of domain dependent search control knowledge. As
shown in our previous work [BK95], the approach of do-
main dependent search control offers considerable promise,
and has motivated our approach to dealing with temporally
extended goals. The other works that have constructed tem-
poral planners have utilized complex constraint management
techniques to deal with temporal information.

In [Kab90, GK91, BKSD95] similar temporal logics and
similar notions of formula progression have been utilized.
In this case the main difference is that here we address
classical plans, i.e., finite sequences of actions, while these
works have concentrated on generating reactive plans, i.e.,
mappings from states to actions (sometimes called universal
plans). Reactive plans have to specify an on-going interac-
tion between an agent and its environment, and thus pose a
quite distinct set of problems.

To generate plans that achieve the goals expressed in our
formalism we present a planning algorithm that uses the
logical mechanism of formula progression. This notion was
previously utilized in our TLPLAN system [BK95]. In fact
we have implemented the planning algorithm by extending
the TLPLAN system. TLPLAN is planning system whose key
feature is that it is able to utilize domain dependent search
control information.. This control is expressed in a temporal
logic that is a limited form of the logic presented here, and
it is utilized by the planner via the mechanism of formula
progression.

The planning algorithm we develop is sound and complete
and as we will demonstrate it is able to generate a range
of interesting plans. Further work is required, however,
to evaluate the planner’s performance on realistic planning
problems.

In the rest of the paper we will first provide the details
of the logic we propose for expressing goals. This logic is
a temporal logic that is based on previous work by Alur et
al. [AFH91]. We then present our approach to planning,
provide examples to demonstrate the range of goals that our
system can cope with, and discuss the heuristic adequacy
of our approach to planning. Finally, we close with some
conclusions and discussion of future work.

Expressing goals in MITL

We use a logical language for expressing goals. The logic is
based on Metric Interval Temporal Logic developed by Alur
et al. [AFH91], but we have extended it allow first-order
quantification.

Syntax

We start with a collection of � -ary predicate (including equal-
ity and the predicate constants TRUE and FALSE) function and
constant symbols, variables, and the connectives � (not) and�

(and). We add the quantifiers � and � and the modal
operators � (next) and U (until). From this collection of
symbols we generate MITL, the language we use to express
goals. MITL is defined by the traditional rules for gener-
ating terms, atomic formulas, and Boolean combinations,
taken from ordinary first-order logic. In addition to those
formula formation rules we add: (1) if � is a formula then
so is �	� ; (2) if ��
 and �� are formulas and � is an interval
then so is �
 U ��� � (the syntax of intervals is defined below);
and (3) if ������� is an atomic formula in which the variable� is free, and � is a formula then so are ��� ��� ��������� � , and��!��� ���������"� .

Notice that in our language we use bounded quantification.
The atomic formula � is used to specify the range over which
the quantified variable ranges. The precise semantics are
given below.

The syntax of intervals is as one would expect. The al-
lowed intervals are all intervals over the non-negative real
line, and we specify an interval by giving its two endpoints,
both of which are required to be non-negative numbers. To
allow for unbounded intervals we allow the right endpoint to
be # . For example, � $&%'#(� specifies the interval of num-
bers � such that $*)+� , ��,.-0/ %'1&-2/'� specifies the interval,.-0/435�6)*1&-0/ , and �!,.%7,8� specifies the interval ,9)5�6)5,
(i.e., the point �;:<,).

Although non-negative intervals are the only ones allowed
in the formulas of MITL, in the semantics and algorithms we
will need to utilize shifted intervals and to test for negative
intervals. For any interval � let �>=@? be the set of numbers� such that �BAC?9DC� , �EAC? be the set of numbers � such
that �;=(?9DF� , and �G3H$ be true iff all numbers in � are
less than 0. For example, ��,.%7#F�=JI.-K, is the new interval��L&-K,.%7#F� , ��$&%'IM�ANI.-K, is the new interval �OAPI&-K,.%8AP$&-K,"� , and�QARI&-S,&%TAR$&-S,M��3F$ is true.

Finally, we introduce U (implication), and V (disjunction)
as standard abbreviations. We also introduce the temporal
modalities eventually W and always X as abbreviations withW>�Y�5Z TRUE U �	� , and X[�Y�5Z\�]W>�Y�]� . We will also
abbreviate intervals of the form �0?Y%7#(� and � $&%^?"� , e.g., W;_K`Qa!b	c
will be written as W;d ` and X�e f a gih as XRj g . Finally, we will
often omit writing the interval �!$.%7#6� , e.g., we will write��
 U e f a!bkh �� as ��
 U �� .

Semantics

We intend that goals be expressed as sentences of the lan-
guage MITL. As hinted in the introduction such formulas
are intended to specify sets of sequences of states. Hence, it
should not be surprising that the underlying semantics we as-
sign to the formulas of MITL be in terms of state sequences.

l
The temporal modalities with the interval m n"oqpBr correspond

precisely to the traditional untimed modalities of Linear Temporal
Logic [Eme90].

A model for MITL is a timed sequence of states, st:uQv f %8-T-8-w% vyx %T-8-8- z . In particular, a model is an infinite se-
quence of states, and each state is a first-order model over a
fixed domain { . That is, each state

vT|
assigns a denotation

for each predicate and function symbol over the domain { .
Furthermore, there is a timing function } that maps each
state

v |
in s to a point on the non-negative real line such

that for all ~ , }�� vT| �)�}�� vy|0�
7� and for all real numbers ?
there exists an ~ such that }�� v | ����? . This means that time
is only required to be non-decreasing, not strictly increasing.
Time can stall at a single point for any finite number of states.
Eventually, however, time must increase without bound.

Let � be a variable assignment, i.e., a mapping from the
variables to elements of { ; � , ��
 , and �� be formulas of
MITL; and s be an MITL model. The semantics of MITL
are then defined by the following clauses.� u s�% v | %7�	z�� :�� , when � is atemporal (i.e., contains no

temporal modalities) and quantifier free, iff
uQv8| %7�>zR� :J� . �� u s�% v7| %7�	zR� :��	� iff

u s�% vy|0�
7%'��zR� :�� .� u s�% v | %7�	z;� :H�
 U �R� � iff there exists
v^�

with }B� vi� ��D��=@}�� v7| � such that
u s�% v � %7�	z>� :��� and for all

vy�
with~])���3N� we have

u s�% v � %7�	z�� :J�
 .� u s�% v7| %7�	zN� :����!��� ���������"� iff for all �JD�{ such thatu�v | %'�;����� ���qz�� :�������� we have
u s�% v | %7�;�����Y���qz�� :J� .� u s�% v | %7�	zR� :���!��� ���������"� iff there exists �;D�{ such thatu�v | %'�;����� ���qz�� :�������� and

u s�% v | %7�E����� ���qzR� :�� .

It is not difficult to show that any formula of MITL that has
no free variables, called a sentence of MITL, has a truthvalue
that is independent of the variable assignment � . Given a
sentence � of MITL we say it is true in a model s , s��:�� ,
iff

u s�% v f zR� :�� .
Since sentences of MITL are either true or false on any

individual timed sequence of states, we can associate with
every sentence a set of sequences: those sequences on which
it is true. We express goals as sentences of MITL, hence we
obtain our desired semantics for goals: a set of acceptable
sequences.

Discussion
Intuitively, the temporal modalities can be explained as fol-
lows. The next modality � simply specifies that something
must be true in the next state. Its semantics do not depend
on the time of the states. It is important to realize, however,
that what it requires to be true in the next state may itself
be a formula containing temporal modalities. MITL gets its
expressive power from its ability to nest temporal modalities.

The until modality is more subtle. The formula ��
 U e � a!�Qh�� , for example, requires that ��� be true in some state whose
time is between 5 and 7 units into the future, and that �
 be
true in all states until we reach a state where ��� is true. The
eventually modality thus takes on the semantics that W � �
requires that � be true in some state whose time lies in the�

Note that �y� is a first-order model, so the relationship
“ �� � oq¡k¢�£ ¤@¥ ” is defined according to the standard rules for first-
order semantics.

interval � , and X[�Y� requires that � be true in all states whose
time lies in � .

Turning to the clauses for the bounded quantifiers we see
that the range of the quantifier is being restricted to the set
of domain elements that satisfy � . If � is true of all domain
individuals, then the bounded quantifiers become equiva-
lent to ordinary quantification. Similarly, we could express
bounded quantification with ordinary quantifiers using the
syntactic equivalences ���!�� �¦������� ��Z§�¨��-!�¦�����BU � and��!��� ���������"��Z�����-!������� � � . We have defined MITL to use
bounded quantification because we will need to place finite-
ness restrictions on quantification when we do planning.

Planning
Planning Assumptions and Restrictions
Now we turn to the problem of generating plans for goals
expressed in the language MITL. First we specify the as-
sumptions we making. (1) We have as input a complete
description of the initial state. (2) Actions preserve this
completeness. That is, if an action is applied to a completely
described state, then the resulting state will also be com-
pletely described. (3) Actions are deterministic; that is, in
any world they must produce a unique successor world. (4)
Plans are finite sequences of actions. (5) Only the agent who
is executing the plan changes the world. That is, there are
no other agents nor any exogenous events. (6) All quantifier
bounds, i.e., the atomic formulas ������� used in the defini-
tion of quantified formulas, range over a finite subset of the
domain.

These assumptions allow us to focus on a particular exten-
sion of planning technology. They are essentially the same
assumptions as made in classical planning. For example, the
assumption that actions preserve completeness is implied by
the standard STRIPS assumption.

It is possible to weaken our assumptions of completeness.
Incomplete state descriptions will suffice as long as they are
complete enough to (1) determine the truth of the precon-
ditions of every action and (2) determine the truth of all
atemporal subformulas of the goal formula. The price that
is paid however is efficiency, instead of a database lookup,
theorem proving may be required to determine the truth of
these two items. However, more conservative notions of in-
completeness like locally closed worlds [EGW94] could be
utilized in our framework without imposing a large compu-
tational burden.

Also, it should be made clear that restricting ourselves to
deterministic actions does not mean actions cannot have con-
ditional effects. In fact, the planner we implemented handles
full ADL conditional actions [Ped89] including actions with
disjunctive and existentially quantified preconditions.

Plan Correctness
Given a goal © expressed as a sentence of MITL we want to
develop a method for generating plans that satisfy © . Sen-
tences of MITL are satisfied by the timed state sequences
described above. Hence, to determine whether or not a plan
satisfies © we must provide a semantics for plans in terms of
the models of MITL.

Inputs: A state � � , with formula label ¥ , and a time duration ª to
the successor state.
Output: A new formula ¥�« representing the formula label of the
successor state.
Algorithm Progress(¥ , � � , ª)
Case
1. ¥ contains no temporal modalities:

if �7��£ ¤¬¥ ¥�«9 ¤ TRUE

else ¥�«9 ¤ FALSE

2. ¥;¤G¥ l�® ¥ � : ¥ « ¤ Progress ¯0¥ l oq� � oqª>° ® Progress ¯0¥ � oO� � oqª�°
3. ¥;¤C±¥ l : ¥ « ¤C± Progress ¯0¥ l oq� � oOª>°
4. ¥;¤@²³¥ l : ¥�«9 ¤G¥ l
5. ¥;¤G¥ l U ´�¥ � :

if µk¶·n ¥ « ¤ FALSE

else if n>¸;µC¥�«9 ¤ Progress ¯0¥ � oq�7��oqª>°¹ ¯ Progress ¯0¥ l oq� � oqª>° ® ¥ l U ´'º¼»;¥ � °
else Progress ¯0¥ l oq�7��oqª>° ® ¥ l U ´'º¼» ¥ �

6. ¥;¤¾½�m ¿� À�r^¥ l : ¥�«9 ¤CÁBÂQÃ�ÄSÅQÆ0Ç ÈÊÉMËSÃÍÌ�Î Progress ¯0¥ l ¯0¿�ÏyÐ7°io��7��owª�°
7. ¥;¤CÑ.m ¿� À�r^¥ l : ¥ « ¤CÒ ÂQÃ�ÄSÅQÆ0Ç ÈÊÉMËSÃÍÌ�Î Progress ¯0¥ l ¯0¿�ÏyÐ7°io�� � owª�°

Table 1: The progression algorithm.

Since actions map states to new states, any finite sequence
of actions will generate a finite sequence of states: the states
that wouldarise as the plan is executed. Furthermore, we will
assume that part of an action’s specification is a specification
of its duration, which is constrained to be greater than or
equal to 0. This means that if we consider

v f to commence
at time 0, then every state that is visited by the plan can be
given a time stamp. Hence, a plan gives rise to a finite timed
sequence of states—almost a suitable model for MITL.

The only difficulty is that models of MITL are infinite
sequences. Intuitively, we intend to control the agent for
some finite time, up until the time the agent completes the
execution of its plan. Since we are assuming that the agent
is the only source of change, once it has completed the plan
the final state of the plan idles, i.e., it remains unchanged.
Formally, we define the MITL model corresponding to a plan
as follows:

Definition 1 Let plan Ó be the finite sequence of actionsu�Ô
 %8-T-8-w% Ô.x z . Let ÕÖ: u�v f %8-8-T-w% v7x z be the sequence of
states such that

vy| : Ô.| � vy|�×
7� , and
v f is the initial state.Õ is the sequence of states visited by the plan. Then the

MITL model corresponding to Ó and
v f is defined to beuQv f %8-T-8-w% vyx % vyx %8-T-8- z , i.e., Õ with the final state

vTx
idled,

where }�� v | ��:Ø}�� v |�×
 �R= duration � Ô | � , $Ù3+~�)+� ,}9� v f �Ú:�$, and the time of the copies of
v x

increases without
bound.

Therefore, every finite sequence of actions we generate
corresponds to a unique model in which the final state is
idling. Given a goal expressed as a sentence of MITL we
can determine, using the semantics defined above, whether
or not the plan satisfies the goal.

Definition 2 Let Ó be a plan, © be a goal expressed as a
formula of MITL,

v f be the initial state, and s be the model
corresponding to Ó and

v f . Ó is a correct plan for © givenv f iff sÛ�:F© .

Generating Plans
We will generate plans by adopting the methodology of our
previous work [BK95]. In particular, we have constructed
a forward-chaining planning engine that generates linear se-
quences of actions, and thus linear sequences of states. As
these linear sequences of states are generated we incremen-
tally check them against the goal. Whenever we can show
that achieving the goal is impossible along a particular se-
quence we can prune that sequence and all of its possible
extensions from the search space. And we can stop when
we find a sequence that satisfies the goal. The incremental
checking mechanism is accomplished by the logical progres-
sion of the goal formula.

Formula Progression The technique of formula progres-
sion works by labeling the initial state with the sentence
representing the goal, call it © . For each successor of the
initial state, generated by forward chaining, a new formula
label is generated by progressing the initial state’s label us-
ing the algorithm given in Table 1. This new formula is used
to label the successor states. This process continues. Every
time a state is expanded during planning search each of its
successors is given a new label generated by progression.

Intuitively a state’s label specifies a condition that we are
looking for. That is, we want to find a sequence of states
starting from this state that satisfies the label. The purpose of
the progression algorithm is to update this label as we extend
the state sequence. It takes as input the current state and the
duration of the action that yields the successor state.

The logical relationship between the input formula and
output formula of the algorithm is characterized by the fol-
lowing proposition:

Proposition 3 Let M : u�v f % v
 %8-8-T- z be any MITL model.
Then, we have for any formula � of MITL,

u
M % v | z;� :Ü� if

and only if
u
M % v |0�
 zR� : Progress ����% v | %^};� v |0�
 ��AC}�� v | �i� .

This proposition can easily be proved by utilizing the def-
inition of MITL semantics.

Say that we label the start state,
v f , with the formula� , and we generate new labels using the progression al-

gorithm. Furthermore, say we find a sequence of states,ÕC: u�v % v
 % v � %T-8-8- z , starting at state
v

that satisfies
v
’s label.

Then a simple induction using Proposition 3 shows that the
sequence leading from

v f to
v

followed by the sequence Õ ,
i.e.,

u�v f %T-8-T-w% v % v
 % v � %T-8-T- z , satisfies � . The progression al-
gorithm keeps the labels up to date: they specify what we
are looking for given that we have arrived where we are.

From this insight we can identify two important features
of the formula progression mechanism. First, if we find any
state whose idling satisfies its label, we have found a correct
plan.

Proposition 4 Let
u�v f % v
 %T-8-T-w% v7x z be a sequence of states

generated by forward chaining from the initial state
v f to

v x
.

For each state
v |

let its label be Ý � v | � . Let the labels of the
states be computed via progression, i.e., for each state

v |
in

the sequence

Ý"� v |0�
 �]: Progress �2Ý � v | �'% v | %w}�� v |0�
 ��A·}9� v | �i�w-

Inputs: A state � , and a formula ¥ .
Output: True if the state sequence ��8oq�8owÞ^ÞwÞ ¢ , where time increases
without bound, satisfies ¥ . False otherwise.
Algorithm Idle(¥ , �)
Case
1. ¥ contains no temporal modalities:

if ��£ ¤G¥ return TRUE

else return FALSE
2. ¥;¤G¥ l�® ¥ � : return Idle ¯0¥ l oq�7° ® Idle ¯0¥ � oq�7°
3. ¥;¤C±¥ l : return ± Idle ¯0¥ l oq�7°
4. ¥;¤@²³¥ l : return Idle ¯0¥ l oq�7°
5. ¥;¤G¥ l U ´�¥ � :

if µk¶·n return FALSE

else if n>¸;µ return Idle ¯0¥ � oq�7°
else return Idle ¯0¥ l oq�7° ® Idle ¯0¥ � oq�7°

6. ¥;¤¾½�m ¿� À�r^¥ l : return Á ÂQÃ�ÄSÅqÇ ÈÊÉMËSÃÍÌ�Î Idle ¯0¥ l ¯0¿&ÏyÐ7°io��7°
7. ¥;¤CÑ.m ¿� À�r^¥ l : return Ò ÂQÃ�ÄSÅqÇ ÈÊÉMËSÃÍÌ�Î Idle ¯0¥ l ¯0¿&ÏyÐ7°io��7°

Table 2: The idling algorithm.

Then s+: u�v f %8%T-8-T-i% vyx % v7x %8-T-8- zR� :@Ý"� v f � iff
uQvyx % v7x %8-8-T- z�� :Ý"� vyx � .

The proof of this proposition follows directly from Propo-
sition 3.

Since Ý"� v f � is a formula specifying the goal, this propo-
sition shows that the plan leading to

vßx
satisfies the goal.

Hence, if we have a method for testing for any state
v

and
any formula �ÜD MITL whether or not

uQv % v %T-8-T- z(� :\� ,
we have a termination test for the planning algorithm that
guarantees soundness of the algorithm. We will describe an
appropriate method below.

Furthermore, as long as the search procedure used by the
algorithm eventually examines all finite sequences of states
the planning algorithm will also be complete.

The second feature of formula progression is that it allows
us to prune the search space without losing completeness. As
we compute the progressed label we simplify it by processing
all TRUE and FALSE subformulas. For example, if the label� �

TRUE is generated we simplify this to � . If any state
receives the label FALSE we can prune it from the search
space, thus avoiding searching any of its successors. From
Proposition 3 we know that this label specifies a requirement
on the sequences that start at this state. No sequence can
satisfy the requirement FALSE, hence no sequences starting
from this state can satisfy the goal and this state and its
successors can be safely pruned from the search space.

Termination As indicated above, we can detect when a
plan satisfies the goal if we can detect when an idling state
satisfies its label. This computation is accomplished by the
algorithm given in Table 2.

Proposition 5 Idle ����% v � returns TRUE if and only ifuQv % v %8-8-T-!zR� :�� . That is, Idle detects if an idling state satisfies
a formula.

The Planning Algorithm Given the pieces developed in
the previous sections we specify the planning algorithm pre-
sented in Table 3. The algorithm labels the initial state with
the goal and searches among the space of state-formula pairs.
We test for termination by running the Idle algorithm on the

Inputs: An initial state �7à , and a sentence á�¸ MITL specifying
the goal.
Returns: A plan â consisting of finite sequence of actions.
Algorithm Plan(á , �)
1. Open ãHä ¯åá.oO� à °Qæ .

2. While Open is not empty.
2.1 ¯0¥�oO�y°ã Remove an element of Open.
2.2 if Idle ¯0¥oq�7° Return (¯0¥o^�7°).
2.3 Successors ã Expand(�).
2.4 For all ¯�� « oQç"°�¸ Successors

2.4.1 ¥ « ã Progress ¯0¥oq�8o duration ¯0ç"°Q° .
2.4.2 if ¥ «·è¤ FALSE

2.4.2.1 Parent(¯0¥ « oq� « °) ã¬¯0¥oq�7° .
2.4.2.2 Open ã Open é;äY¯��y«�oQ¥�«°Qæ .

Table 3: The planning algorithm.

state’s formula. To expand a state-formula pair we apply all
applicable actions to its state component, returning all pairs
containing a successor state and the action that produced that
state (this is accomplished by Expand(

v
)). We then compute

the new labels for those successor states using the Progress
algorithm.

It should be noted that we cannot treat action sequences
that visit the same state as being cyclic. If we are only looking
for a path to a final state, as in classical planning, we could
eliminate such cycles. Goals in MITL, however, can easily
require visiting the same state many times. Nevertheless,
we can view visiting the same state-formula pair as a cycle,
and optimize those cycles using the standard techniques. ê
Intuitively, when we visit the same state-formula node we
have arrived at a point in the search were we are searching
for the same set of extensions to the same state.

Proposition 6 The planning algorithm is sound and com-
plete. That is, it produces a plan that is correct for © given

v f
(Definition 2), and so long as nodes are selected from Open
in such a manner that every node is eventually selected, it
will find a correct plan if one exists.

This proposition follows from the soundness of our termina-
tion test (Proposition 4).

We have implemented the planning algorithm as an ex-
tension of the TLPLAN system [Bac95]. This allowed us to
utilize many of the features already built into the TLPLAN
system, including full support of the ADL formalism [Ped89]
for specifying actions.

Example and Empirical Results
Types of Goals
The domain we used is a variant of the classical STRIPS robot
rooms domain [FN71]. The configuration of the rooms is
illustrated in Figure 1. In this domain there are objects and
a robot, which can be located at any of the 2 locations in
the corridor, ë;/ or ë>ì , or any of the 4 rooms í4/Y%8-T-8-q%7íkì .
The robot can move between connected locations, it canî

For example, we can eliminate that node or search from it
again if the new path we have found to it is better than the old
path. These considerations will determine how we decide to set
Parent(¯0¥ « oq� « °) in step 2.4.2.1

Operator Precondition Adds Deletes

open ¯�ïwð"° at ¯0ñyòTóiòßôOo�ïw¿�°
connects ¯�ïwð.oqïw¿�oqïwõ"°
closed ¯�ïwð"°
door ¯�ïwð"°

opened ¯�ïwð"° closed ¯�ïwð"°

close ¯�ïwð"° at ¯0ñyòTóiòßôOo�ïw¿�°
connects ¯�ïwð.oqïw¿�oqïwõ"°
opened ¯�ïwð"° door ¯�ïwð"°

closed ¯�ïwð"° opened ¯�ïwð"°
grasp ¯�ïwòY° at ¯0ñyòTóiòßôOo�ïw¿�°

at ¯�ïwò"oQïw¿�°
handempty
object ¯�ïwòY°

holding ¯�ïwòY° handempty ¯�ïwð"°

release ¯�ïwòY° holding ¯�ïwòß° handempty holding ¯�ïwòY°
move ¯�ïw¿�oOï'õ"° at ¯0ñyòTóiòßôOo�ïw¿�°

connects ¯�ïwð.oqïw¿�oqïwõ"°
opened ¯�ïwð"°

at ¯0ñ7ò8óqòYôOoOï'õ"°
holding ¯�ïwòß°ö at ¯�ïwòMoqïwõ"°

at ¯0ñyòTóiòßôOoqïw¿�°
holding ¯�ïwòY°ö at ¯�ïwòMoqïw¿�°

Table 4: Operators for Robot Room domain.

open and close doors (indicated as gaps in the walls), and
it can grasp and carry one object at a time. The operators
that characterize its capabilities are shown in Table 4. In
this table variables are preceded by a question mark “ ÷ ”.
Also, the move operator is an ADL operator with conditional
effects. For all objects that the robot is holding it updates
their position. This is indicated in Table 4 by the notationø
 U�Ý in the add and delete columns: the literal Ý is added or
deleted if

ø
 holds. The duration of most of the actions is set
to 1. Our implementation allows us to set the duration of an
action to be dependent on the instantiation of its parameters.
In particular, we set the duration of move ���%wù¼� to be 1,
except for move ��ë;/ %'ë>ì.� which has duration 3.

Any initial state for this domain must specify the location
of the robot and the existence and location of any objects
in the domain. It must also specify whether each door is
opened or closed. The doors connect the rooms to each other
and to the corridor locations, and a set of connects relations
must be specified, e.g., connects ��{9/Y%7ë;/Y%7í4/T� . Door {9/
connects the corridor location ë�/ and í4/ , door {4ì connectsë>ì and íkì , and the doors {4~Í� connect rooms ík~ and íP�
(~q%i�EDGú¼/ %'I&%'û&ü).

Finally, the two corridor locations are connected by a
“corridor” which is always “open”. So literals of the form
connects � corridor %7ë;/Y%7ë>ì.� , and opened � corridor � , must
also be present in the initial state description.

R1 R2 R3 R4

C4C1

Figure 1: Robot Room domain

Classical Goals: Classical goals can easily be encoded
as untimed eventualities that hold forever. For example,
the classical goal ú at � robot %'ë�/T�w% at � obj1 %'íkì.�wü expressed
as a set of literals, can be encoded as the MITL formulaW4X>� at � robot %'ë;/8� � at � obj1 %7íRì.�q� . Any classical goal can

be encoded in this manner. Given the semantics of plans as
idling their final state, this formula will be satisfied by a plan
only if the final state satisfies the goal.

More generally we can specify a classical “achieve a fi-
nal state” goal by enclosing any atemporal formula of our
language in an eventuality. We can specify disjunctive
goals, negated conditions, quantified goals, etc. The formulaW;����!�� object ������� at ����%'íkì¼��V at �0?Yý"þwý8ÿ7%7íkì¼�i� , for example,
specifies the goal state where some object or the robot is in
room íkì .

Safety and Maintenance Goals: In [WE94] Weld and Et-
zioni discuss the need for safety conditions in plans. Such
conditionshave also been studied in the verification literature
[MP92]. MITL can express a wide range of such conditions.
Maintenance goals (e.g., [HH93]) which involve keeping
some condition intact, are very similar.

Weld and Etzioni propose two specific constructions,
don’t-disturb and restore, as a start towards the general goal
of expressing safety conditions. Both of these constructions
are easily encoded as goals in MITL.

Don’t-disturb specifies a condition ������� . A plan is
defined to satisfy a don’t-disturb condition if during its
execution no instantiation of ������� changes truth value.
Such conditions are easily specified by conjoining the
formula �¨��-K�������NU X¦������� to the original goal. g For
example, the goal W4X>� at � robot %'ë�/T� �

at � obj1 %'íkì.�q� �
���!��� opened �������.X opened �����w% can only be satisfied by a plan
that does not disturb any open doors.

Restore also specifies a condition ������� . A plan satisfies a
restore condition if it tidies up after it has finished. That is,
at the end of its plan it must append a new plan to restore the
truth of all instantiations of ������� that held in the initial state.

We can specify restore goals in MITL by conjoining the
formula �¨�-K�������]U\W4X�������� , which specifies that the final
state of the plan must satisfy all instantiations of � that held�

We must appropriately rewrite ½¼¿�Þ ¥¯0¿�° in terms of bounded
quantification. Also it is not difficult to see that multiple variables
in ¥ can be handled by additional quantifiers. Similar remarks hold
for encoding restore.

in the initial state.
�

Notice that the semantic distinction
between restore and don’t-disturb goals is made clear by our
formalism. Restore goals use W4X while don’t-disturb goals
use X . That is, restore goals allow the violation of � during
the plan, as long as these conditions are eventually restored
in the final state.

Both of these conditions are limited special cases. MITL
can express much more than this. For example, say that
we want to constrain the robot to close doors that it opens.
We cannot place a don’t-disturb condition closed ����� , as this
would prohibit the robot from moving into rooms where the
doors are closed. If we specify this as a restore condition,
the robot might leave a door opened for a very long time until
it has finished the rest of its plan. In MITL, however we can
use the formula

X>�å���!��%^ùÊ%��Ê� connects ���Ê%'��%^ù.���
at �0?Yý"þ'ý8ÿ7%'��� � closed ���¼� � � open ���¼�U ��� at �0?Yý"þwý8ÿ7%wù¼� � �	�	� closed ���.�q�

(1)

This formula specifies that if the robot opens a closed
door (closed ���¼� � �;� open ���.�q�), then it must go through
the door (�	� at �Í?Yý"þwý8ÿ7%^ù.�) and then it must close the door
(�	�4� closed ���¼�). Hence, the robot is forced to be tidy with
respect to doors: it only opens doors for the purpose of mov-
ing through them, and it closes the doors it opens behind
it.

Timing Deadlines: MITL is also capable of expressing
goals with timing conditions. For example X��
 f � requires
the condition � be achieved within ten time units.

Empirical Results
We have tested different goals from each of the cate-
gories mentioned above. Most of the plans were generated
from the initial state in which at � obj1 %7íE/8� , at � obj2 %'í>I"� ,
at � robot %'ë;/8� , handempty, object � obj1 � , object � obj2 � , and
all of the doors are opened.

G1: From this initial state we set the goal to
be W4X�� at � robot %7ë;/T� �

at � obj1 %7í>I"�i� . This corre-
sponds to the classical goal ú at � robot %7ë;/8�w% at � obj1 %7í>I"�'ü .
The planner generates the plan: move ��ë;/ %'í4/8� ,
grasp � obj1 � , move ��íE/ %'í>IM� , release � obj1 � , move ��í�I&%'í4/8� ,
move ��í4/Y%7ë;/T� . It took the planner 22 sec., expanding 636
worlds to find this plan. �
G2: From the same initial state we set the goal to beW4X>����!��� object ������� at ���%7í>û"� � handempty � . Now the plan-
ner generates the plan: move ��ë;/Y%7í4/T� , move ��í4/Y%7í�IM� ,
grasp �	�	IM� , move ��í>I&%'í>û"� , release �	�	IM� . In this case it has
generated a plan for a quantified goal. This plan takes the
planner 3 sec., expanding 126 worlds to find the plan.

When we add this formula as a conjunct to the original goal we
force the planner to find a plan that satisfies the restore. If we want
to give restore conditions lower priority, as discussed in [WE94],
we could resort to the techniques of replanning suggested there.�

Timings are taken on a SPARC station 20, and a breadth first
strategy was used so as to find the shortest plans.

G3: Now we change the initial state so all of the doors
are closed. We set the goal to be W4X>� at �0?Yý"þwý8ÿ7%7ë;/8� �
at � obj1 %7í>I"�q� conjoined with Formula 1. This is simply
a classical goal with an additional constraint on the robot to
ensure it closes doors behind it. For this goal the planner
generates the plan open ��{9/8� , move ��ë;/Y%7í4/T� , close ��{9/8� ,
grasp ���;/T� , open ��{9/TIM� , move ��í4/ %'í>I"� , close ��{9/TI"� ,
release ���;/T� , open ��{9/TIM� , move ��í�I&%'í4/8� , close ��{9/TIM� ,
open ��{9/8� , move ��í4/Y%7ë;/T� , close ��{9/T� . This plan took the
planner 77 sec., expanding 1571 worlds, to find.

G4: We reset the initial state to one where all of the
doors are open and set the goal to be X� � f at � obj1 %7íkì¼� �X�� � Ô ÿT� obj2 %7í>û"� � ���!��� opened �������¼X opened ����� . This is a
goal with a tight deadline. The robot must move directly toí>I and move obj2 to í>û . If it stops to grasp obj1 along the
way it will fail to get obj2 into í�û on time. Also we conjoin
a subgoal of not closing any open doors. As we will discuss
below this safety constraint acts as a form of search con-
trol, it stops the planner pursing useless (for this goal) close
actions. The planner generates the plan: move ��ë;/ %'í4/8� ,
move ��í4/Y%7í>I"� , grasp ���	I"� , move ��í>I.%7í>û"� , release ���	I"� ,
move ��í>û.%7í>I"� , move ��í�I&%'í4/8� , grasp �	�;/8� , move ��í4/Y%7í�IM� ,
move ��í>I.%7í>û"� , move ��í>û.%7íRì.� . This plan took the planner
8 sec., expanding 284 worlds, to find.

G5: If we change the time deadlines in the previ-
ous goal and set the goal it to be X��� at � obj1 %7íkì¼� �
X�� � f Ô ÿT� obj2 %7í>û"� � ���!��� opened �������.X opened ����� The plan-
ner generates the plan: move ��ë;/ %'í4/8� ,
grasp ���;/T� , move ��íE/ %'í>IM� , move ��í>I.%7í>û"� , move ��í>û.%7íRì.� ,
release ���;/T� , move ��íkì�%7í>û"� , move ��í>û&%'í>I"� , grasp ���	I"� ,
move ��í>I.%7í>û"� . It took the planner 120 sec. to find this
plan, expanding 1907 worlds on the way.

Search Control
Although our planner can generate an interesting range of
plans, by itself it is not efficient enough for practical prob-
lems. For example, when it is only given the goal of achiev-
ing some final state, it has to resort to blind search to find a
plan. Similarly, it has no special mechanisms for planning
for quantified goals, it simply searches until it finds a state
satisfying the goal. Safety goals offer better performance, as
such goals prune the search space of sequences that falsify
them. This is why we included safety conditions on open
doors in the fourth and fifth tests above: they allow the plan-
ner to find a plan faster. Again for goals with complex timing
constraints, the planner does not utilize any special temporal
reasoning.

The major advantage of our approach lies in the ability
of the planner to utilize domain dependent search control
information. Such information can be expressed as formulas
of MITL and conjoined with the goal. We have explored this
approach to search control in [BK95] where we demonstrate
that is often possible to construct polynomial time planners
using quite simple search control knowledge. We know of
no other approach to increasing the efficiency of planners

that has been able to produce polynomial time behavior in
these domains.

As a simple illustration of the power of this using search
control consider the following trivial search control formula:

X � ���!��� at �0?Yý"þ'ý8ÿ7%'�����"��� � � at �Í?Yý"þwý8ÿ7%'��� � �	� at �0?Yý"þ'ý8ÿ7%'���q�� ��� ��� object ���¼���"����� holding ���.� � � holding ���.�� �4� � holding ���.�q���
If we conjoin this formula with any other goal, the planner
will prune sequences in which (1) the robot grasps an object
and then immediately releases it, and (2) the robot moves
away from a location and then immediately moves back. For
this domain these sequences serve no purpose even in plans
where the robot must visit the same state more than once. �

Conjoining this formula with the example goals given
above we obtain the following speedups.

Example Time World New-Time New-Worlds
1 22 636 12 405
2 3 126 2 93
3 77 1571 18 304
4 8 284 1 38
5 120 1907 7.75 199

The columns give the planning time and the number of worlds
expanded, before and after we add the search control formula.
Note in particular, the speedups obtained on the harder prob-
lems. Furthermore, it should be noted that this is only the
simplest and most obvious of control formulas for this do-
main.

References
[AFH91] Rajeev Alur, Tomas Feder, and Thomas Henzinger.

The benefits of relaxing punctuality. In Tenth Annual
ACM Symposium on Principles of Distributed Comput-
ing (PODC 1991), pages 139–152, 1991.

[AKRT91] J. Allen, H. Kautz, Pelavin R., and J. Tenenberg. Rea-
soning about Plans. Morgan Kaufmann, San Mateo,
CA, 1991.

[Bac95] Fahiem Bacchus. Tlplan (version 2.0) user’s manual.
Available via
the URL ftp://logos.uwaterloo.ca:/pub/bacchus/tlplan-
manual.ps.Z, 1995.

[BK95] Fahiem Bacchus and Froduald Kabanza. Using tem-
poral logic to control search in a forward chaining
planner. In Proceedings of the 3rd European Work-
shop on Planning, 1995. Available via the URL
ftp://logos.uwaterloo.ca:/pub/tlplan/tlplan.ps.Z.

[BKSD95] M. Barbeau, F. Kabanza, and R. St-Denis. Synthesizing
plant controllers using real-time goals. In Proc. Thir-
teenth International Joint Conference on Artificial In-
telligence (IJCAI ’95), pages 791–798, 1995.

[CT91] K. Currie and A. Tate. O-plan: the open planning
architecture. Artificial Intelligence, 52:49–86, 1991.�

In general, in order to achieve some timed goals we may need
to allow the robot to wait. But, in that case it is more effective to
introduce a specific wait action and still outlaw pointless cycles.

[Dru89] M. Drummond. Situated control rules. In Proc. First
International Conference on Principles of Knowledge
Representation and Reasoning (KR ’89), pages 103–
113. Morgan Kaufmann, 1989.

[EGW94] O. Etzioni, K. Golden, and D. Weld. Tractable closed
world reasoning with updates. In Principles of Knowl-
edge Representation and Reasoning: Proc. Forth Inter-
national Conference (KR ’94), pages 178–189, 1994.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van
Leeuwen, editor, Handbook of Theoretical Computer
Science, Volume B, chapter 16, pages 997–1072. MIT,
1990.

[FN71] Richard Fikes and Nils Nilsson. Strips: A new ap-
proach to the application of theorem proving to prob-
lem solving. Artificial Intelligence, 2:189–208, 1971.

[GK91] P. Godefroid and F. Kabanza. An efficient reactive plan-
ner for synthesizing reactive plans. In Proc. National
Conferenceon Artificial Intelligence (AAAI ’91), pages
640–645, 1991.

[HH93] P. Haddawy and S. Hanks. Utility models for goal-
directed decision-theoretic planners. Technical Report
93–06–04, University of Washington, 1993. Technical
Report.

[Kab90] F. Kabanza. Synthesis of reactive plans for multi-path
environments. In Proc. National Conference on Artifi-
cial Intelligence (AAAI ’90), pages 164–169, 1990.

[Lan93] A. Lansky. Localized planning with diversified plan
construction methods. Technical Report T.R. FIA-93-
17, NASA Ames Research Center, 1993. Technical
Report.

[MP92] Zohar Manna and Amir Pnueli. The temporal logic
of reactive and concurrent systems: Specication.
Springer-Verlag, New York, 1992.

[Ped89] E. Pednault. ADL: Exploring the middle ground be-
tween STRIPS and the situation calculus. In Proc. First
International Conference on Principles of Knowledge
Representation and Reasoning (KR ’89), pages 324–
332, 1989.

[PW94] J. Scott Penberthy and Daniel Weld. Temporal planning
with continuous change. In Proc. National Conference
on Artificial Intelligence (AAAI ’94), pages 1010–1015.
Morgan Kaufmann, 1994.

[Sch87] M. J. Schoppers. Universal plans for reactive robots
in unpredictable environments. In Proc. Tenth Interna-
tional Joint Conference on Artificial Intelligence (IJ-
CAI ’87), pages 1039–1046, 1987.

[Ver83] S. Vere. Planning in time: Windows and durations for
activities and goals. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 5, 1983.

[WE94] Daniel Weld and Oren Etzioni. The first law of robotics
(a call to arms). In Proc. National Conference on Arti-
ficial Intelligence (AAAI ’94), pages 1042–1047, 1994.

[Wil88] D. Wilkins. Practical Planning. Morgan Kaufmann,
San Mateo, CA, 1988.

