
Using a Recursive Neural Network to Learn
an Agent’s Decision Model for Plan Recognition

Francis Bisson and Hugo Larochelle and Froduald Kabanza
Département d’informatique

Université de Sherbrooke
Sherbrooke (QC) J1K 2R1, Canada
{firstname.lastname}@usherbrooke.ca

Abstract
Plan recognition, the problem of inferring the
goals or plans of an observed agent, is a key el-
ement of situation awareness in human-machine
and machine-machine interactions for many appli-
cations. Some plan recognition algorithms require
knowledge about the potential behaviours of the
observed agent in the form of a plan library, to-
gether with a decision model about how the ob-
served agent uses the plan library to make deci-
sions. It is however difficult to elicit and specify the
decision model a priori. In this paper, we present
a recursive neural network model that learns such a
decision model automatically. We discuss promis-
ing experimental results of the approach with com-
parisons to selected state-of-the-art plan recogni-
tion algorithms on three benchmark domains.

1 Introduction
Understanding complex events that unfold in a given situa-
tion is an essential aspect of situation awareness in human
cognition and intelligent decision-making. For many situa-
tions, this requires the ability to infer the intentions, goals
and plans of others from the observation of their actions, that
is, plan recognition [Schmidt, 1976; Baker et al., 2009].

In this paper we consider the case of a plan recognition
problem where one observer is trying to infer the goal or plan
of one observee, assuming that the observer does not exe-
cute actions that influence the decisions of the observee, that
is, the keyhole plan recognition problem. One of the main
frameworks used to solve this problem is to explicitly explore
a space of goal or plan hypotheses, generated using a plan li-
brary specified a priori and consistent with the sequence of
observations, in order to select the hypothesis that best ex-
plains the observations [Geib and Goldman, 2009; Geib et
al., 2008; Kabanza et al., 2013; Sukthankar and Sycara, 2005;
Avrahami-Zilberbrand and Kaminka, 2005].

Such plan-library-based approaches assume that the ob-
servee indeed behaves by making decisions within the action
space circumscribed by the plan library. However, it is diffi-
cult in practice to specify a priori a library of plans that cover
all the potential behaviours, let alone specifying a priori how
the observee makes decisions using the plan library. The gap

between the space of behaviours conveyed by the plan library
and the actual decision-making space of the observee charac-
terizes the plan recognizer’s accuracy error margin. To reduce
this error, one strategy is to learn the plan library and to learn
the observee’s decision-making model which indicates how
they decide to act with the plan library.

In this paper, we describe a solution to the second aspect of
the problem. Assuming a given plan library, we cast the prob-
lem of learning the probabilistic decision-making model for
an agent behaving based upon the library as multinomial lo-
gistic regression. We train a recursive neural network to learn
the vector representation of plan hypotheses, and compute a
score for each one of them. We then use a softmax classifier
to train the model to yield high scores for correct hypothe-
ses and a low score for incorrect ones to allow ranking the
hypotheses by score.

We have compared the approach against a plan-library-
based [Geib and Goldman, 2009] and an inverse-planning-
based [Ramı́rez and Geffner, 2010] plan recognition algo-
rithm on three benchmark domains. We obtained better
recognition accuracy on all domains. The idea is general,
but to be specific we grounded it in a framework that gener-
ates plan hypotheses by parsing a sequence of observations
using a plan library of hierarchical task networks (HTNs).
This framework underlies, for example, the PHATT [Geib
and Goldman, 2009], Yappr [Geib et al., 2008] and DO-
PLAR [Kabanza et al., 2013] algorithms. To simplify the ex-
posure we assume fully observable agents and briefly discuss
in the conclusion issues related to relaxing this restriction.

In the next section of this paper, we give a brief state of the
art along with some background on the plan recognition algo-
rithms we later compare to. Then, we give a formal descrip-
tion of HTN plan libraries and explain how they are used to
generate and explore a space of plan hypotheses that explain
a sequence of observations. This sets the stage for a detailed
description of the recursive network model that learns the ob-
servee’s HTN decision-making model. Finally we present
and discuss experiments before concluding with some hints
on the way forward with our future investigations.

2 Related Work
Plan recognition problems in general may involve different
multiagent configurations: a single or a team of observer(s),
and a single or a team of observee(s). The observer(s) may

have partial or full observational capabilities. The observer(s)
and the observee(s) may have competing or shared goals,
leading to situations of cooperative or adversarial plan recog-
nition [Kott and McEneaney, 2006]. The observer(s) and the
observee(s) may have interactions that affect each other’s de-
cisions, leading to situations of game-theoretic plan recogni-
tion [Lisý et al., 2012].

Here we focus on one-on-one plan recognition problems,
assuming the observer is passive and does not perform ac-
tions that might interfere with the observee’s decision-making
process. A typical plan recognition algorithm in this con-
text requires as input a model conveying background knowl-
edge on the decision-making and acting capabilities of the
observee, as well as a sequence of observations. The so-
called inverse-planning approaches only require a model of
the observee’s primitive actions [Ramı́rez and Geffner, 2010;
2011; Baker et al., 2009]. The so-called plan-library-based
approaches in contrast require in addition a plan library,
i.e., the recipes the observee may follow to make decisions.
Such knowledge can be provided for example as an HTN
or a partially-ordered multiset context-free grammar (pom-
set CFG) [Geib and Goldman, 2009; Kabanza et al., 2013],
or as Markov logic formulae [Song et al., 2013].

The idea of recognizing plans by exploring a hypothesis
space conveyed by a plan library goes back to the seminal
work of [Kautz and Allen, 1986]. Given a plan library in a
hierarchy of first-order logic formulae, plan recognition was
reduced to finding the minimal cover set of top-level goals in
the hierarchy sufficient to explain the observations. Another
early seminal work, by [Charniak and Goldman, 1993], also
relies on a plan library, but supported probabilistic reasoning.

The HTN-based parsing approach which underlies the
PHATT [Geib and Goldman, 2009], Yappr [Geib et al., 2008]
and DOPLAR [Kabanza et al., 2013] algorithms have pur-
sued this plan-library-based line of inquiry, by incorporating
an explicit probabilistic model of decision-making and execu-
tion of the observee, that is, a model about how the observee
decides and executes actions with the plan library. This model
is key to these approaches being able to chose a plan hypoth-
esis that best explains a sequence of observations.

Unlike plan-library-based approaches, inverse-planning-
based approaches [Ramı́rez and Geffner, 2010; 2011; Baker
et al., 2009] don’t require any strategic knowledge on how
the observee makes decisions. All they need is a set of primi-
tive actions executable by the observee. The intuition behind
these approaches is that, given a sequence of observations and
a set of potential goals, the goal that is most likely pursued by
an agent is the one for which the optimal plan is most consis-
tent with the observations so far. The probability of a goal is
thus proportional to the difference between the cost of an op-
timal plan for that goal consistent with the observations and
the cost of an optimal plan for that same goal, but inconsistent
with the observations. The computation of this probability re-
quires invoking a planning algorithm twice for each goal and
for each observation update. While this might be a source
of significant overhead, these approaches have the advantage
of accounting implicitly for the entire space of primitive be-
haviours of the observee rather than the space constrained by
a plan library.

[Sohrabi et al., 2011] introduced an approach that is some-
what in-between plan-library-based and inverse-planning-
based. Like inverse-planning-based approaches, plan hy-
potheses for a sequence of observations are generated using
an automated planner. The best explanations are found using
preferences specified in Past Linear Temporal Logic. Simi-
lar to plan libraries, the temporal logic formulae are domain-
dependent knowledge that must be specified a priori.

The approach of [Wiseman and Shieber, 2014] also sup-
poses the use of traditional planners to generate plan hypothe-
ses, but it uses a machine learning technique to select the
best hypotheses. More specifically, a heuristic beam search
through the space of valid abductive proofs is used to gener-
ate a set of plan hypotheses. Hypotheses are then mapped into
feature space based on a list of structural features of abduc-
tive proofs, and the best hypothesis is selected by a trained
reranker. [Min et al., 2014] recently proposed a goal recogni-
tion algorithm that uses a neural network architecture. A fun-
damental limitation of both approaches is that they require the
discriminative features to be specified a priori by an expert.
Moreover, the features in the work of Wiseman and Shieber
are based on the structure of abductive proofs, which the ex-
pert must master, not on the domain or the observations.

Our approach in this paper is inspired to some extent by
this latter work, but avoids its shortcomings. By using a deep
learning technique with a recursive neural network (RNN),
our approach is able to learn automatically the meaningful
features that enable discrimination between correct and in-
correct plan hypotheses while at the same time learning to
select the best plan hypothesis. Instead of formulating plan
hypotheses as abductive proofs, in this paper we represent
them as trees for a sequence of observations using an HTN
plan library (that is, a pomset CFG) within the HTN-based
parsing framework of PHATT [Geib and Goldman, 2009],
Yappr [Geib et al., 2008] and DOPLAR [Kabanza et al.,
2013]. In this context, what the RNN learns is indeed the
observee’s decision-making model, assuming he is behaving
by executing an HTN plan library, i.e., the model required by
these approaches to select the best plan hypotheses.

There is a sharp contrast between our approach and that of
[Min et al., 2014] which also uses a neural network to infer
goals from observations. Their approach still requires the fea-
tures (conveyed by the representation of actions) to be known
a priori and they use a feed-foward neural network. We ex-
pect the use of a recursive neural network in our approach to
enable the learning of more complex behavioural features.

3 Goal and Plan Hypotheses Generation
through HTN Parsing

Here we summarize the gist of HTN parsing in PHATT [Geib
and Goldman, 2009], Yappr [Geib et al., 2008] and DO-
PLAR [Kabanza et al., 2013]. An HTN plan library is fun-
damentally a partially-ordered multiset context-free gram-
mar [Kabanza et al., 2013]. Plans generated from an HTN
plan library can be understood as partially-ordered strings of
actions. Goals are conveyed by root (top-level) tasks. Thus,
a HTN describes how to achieve a goal (task) by recursively
decomposing it into subgoals (subtasks) down into executable

Figure 1: Simple plan library for the StarCraft RTS
game [Kabanza et al., 2013]

actions (primitive tasks). Plan hypotheses that explain a se-
quence of observations are conveyed by derivation trees of
the observations.

Definition 1. More formally, a plan library is a tuple L =
(A,G, I,R), where A is a finite set of action symbols (ter-
minals), G is a finite set of goal symbols (nonterminals),
I ⊆ G is a set of root goal symbols, and R is a set of
partially-ordered production rules. Each rule takes the form
g → [β;C], where g ∈ G, β ∈ (A ∪ G)∗ is a string of ter-
minal and nonterminal symbols, and C is a set of ordering
constraints of the form (i, j), meaning that the ith symbol of
β must precede the jth symbol of β.

A rule g → [β0, . . . , βn;C] means that goal g can be ac-
complished by achieving or executing each of the βi (where
0 ≤ i ≤ n) in any order consistent with constraints C. There
can be many rules with a common left-hand side g, repre-
senting alternative choices for accomplishing goal g. A sim-
ple plan library for the StarCraft RTS game is illustrated in
Figure 1 [Kabanza et al., 2013].

The hypothesis generation algorithm is an incremental
parser over a plan library and a sequence of observation con-
sisting of terminal symbols that produces all hypotheses con-
sistent with the plan library and the observations.

Definition 2. A hypothesis explaining a sequence of observa-
tions σ ∈ A∗ for a plan library L = (A,G, I,R) is a forest of
partial parse trees augmented with ordering constraints. The
root symbol of each parse tree must be in the set I ⊆ G.

A hypothesis may have several root symbols (parse trees)
to account for an observee interleaving the execution of sev-
eral plans concurrently. A hypothesis accounts both for the
goal the observee is pursuing and the plan (i.e., the interleav-
ing of actions). Each symbol in a hypothesis may also be
observed or not.

Definition 3. A terminal symbol is observed in a parse tree iff
it matches an observation from the sequence of observations,
otherwise it is unobserved. A nonterminal symbol is observed
iff all of its children in the derivation are also observed; a
nonterminal symbol is unobserved if it is not yet derived.

The probability of a generated hypothesis is computed us-
ing the observee’s HTN decision model, which is in fact a
probability distribution over all decision choices conveyed
by the HTN plan library: a distribution about how the agent
chooses or commit to goals (a priori probabilities for root
goals), a distribution about how the agent chooses among al-
ternatives in the HTN hierarchy, and a distribution about how

the agent interleaves independent or concurrent actions (re-
ferred to as choice in the pending set in Yappr and PHATT).

Defining the HTN decision model is one of the key lim-
itations of PHATT, Yappr and DOPLAR. By default, these
algorithms use a uniform probability distribution for the dif-
ferent choices. [Geib and Goldman, 2009] have explained the
rationale for a uniform distribution by default, while also rec-
ognizing the importance of developing methods that can learn
a more accurate HTN decision model.

4 Recursive Neural Network Approach
Given the rich structure of the HTN decision model (proba-
bility choices over a recursive HTN), we set out to investigate
the use of a recursive neural network (RNN) to learn it au-
tomatically. It has two main components: the RNN architec-
ture, which yields a learned feature representation of hypothe-
ses, and the logistic regression scorer, which uses the RNN
representation in order to assign probabilities to hypotheses.

4.1 RNN Feature Representation of Hypotheses
An RNN in general is a type of multilayer neural network
that learns the representation of recursive, hierarchical struc-
tures, such as the hypotheses we consider in this paper. RNNs
can map such structures into a vectorial feature space by re-
cursively merging the learned feature representation of the
components of the structure, from its leaves towards its root.
Although there exist various metrics for comparing trees that
could potentially be used for ranking explanations, our ap-
proach goes beyond simple ranking and learns directly the
observee’s HTN decision model, which accurately predicts
how the agent chooses goals and actions.

RNNs have been used before in a number of applications
that involve complex syntactic structures, such as natural
language sentences and scene image parsing [Socher et al.,
2011] and describing images with sentences [Socher et al.,
2014]. However, the models used to date could only predict
the binary tree hierarchical structure of natural language sen-
tences and scene images [Socher et al., 2011], or only con-
sider the relative position of nodes in the tree [Socher et al.,
2014]. As such, they are not sufficient for learning an HTN
decision model.

The RNN architecture that we describe in this paper cap-
tures the structural and semantic characteristics of an HTN
decision model, which also underlie plan hypotheses, in par-
ticular the ordering constraints as well as the distinction be-
tween observed and unobserved symbols. The intuition is that
these properties are necessary to discriminate between correct
and incorrect hypotheses.

In a nutshell, given one partial parse tree in a hypothe-
sis, the RNN first represents its leaves using feature vectors
that are learned for each of the leaf symbols. Then, it com-
putes the feature representation of each component higher up
in the parse tree, as a nonlinear (merging) transformation of
each component’s children, much like the hidden layer of a
feed-forward neural network. Finally, a representation for the
whole hypothesis is obtained by merging the representation
of the roots of all parse trees in the hypothesis.

More specifically, let vector hθ(x) be the feature vec-
tor representation of symbol x in a parse tree, where θ =

A

B ca

Ed

Figure 2: Simple hypothesis with 1 root symbol. Lowercase
symbols are terminals, and uppercase symbols are nontermi-
nals. A symbol with a dashed line above it is unobserved.

(R,W,U,V,Q,b,d) are the RNN’s parameters. Let n also
be the size of these vectors, i.e., the number of features. For
x corresponding to a leaf symbol (either a terminal or a non-
terminal), hθ(x) is simply the corresponding column Rx in a
learned representation matrix R ∈ Rn×m, where m is the to-
tal number of terminal and nonterminal symbols in the plan li-
brary. Then, each non-leaf representation hθ(x) is computed
from the children of x as follows:

hθ(x) = g

(
b+

1

w

w∑
i=1

Whθ(xi) +
1

u

u∑
k=1

Uhθ(xk)

+
1

v

v∑
j=1

Vcj,θ(x)

)
,

(1)

where:
• W ∈ Rn×n and U ∈ Rn×n are the connection weights

used to model the contribution of observed and unob-
served symbols, respectively, and V ∈ Rn×2n is used
for the contribution of ordering constraints;
• b ∈ Rn is a bias vector;
• cj,θ(x) = [hθ(xjleft),hθ(xjright)]

> is the vector represen-
tation of the jth ordering constraint obtained by concate-
nating the representations of the left and right symbols
of the constraint; and
• g is any sigmoid-like function, w is the number of ob-

served children symbols under x, u is the number of un-
observed children under x, and v is the number of order-
ing constraints under x.

For example, obtaining the feature vector representation of
all components in the parse tree rooted at A in Figure 2 is
illustrated in Figure 3 and is computed like so:

hθ(A) = g

(
b+

1

1

(
Whθ(a)

)
+

1

2

(
Uhθ(B) +Uhθ(c)

)
+

1

2

(
V [hθ(a),hθ(B)]> +V [hθ(B),hθ(c)]

>
))

hθ(B) = g

(
b+

1

1

(
Whθ(d)

)
+

1

1

(
Uhθ(E)

))
hθ(a) = Ra, hθ(c) = Rc, hθ(d) = Rd, hθ(E) = RE

Finally, to obtain the feature representation of the whole
hypothesis η (which can consist of t ≥ 1 parse trees), we
perform a similar merging transformation as for parse tree
components, as follows:

hθ(η) = g

(
d+

t∑
i=1

Qhθ(rooti)

)
, (2)

Figure 3: Computing the representation and the score of a
hypothesis with the recursive neural network. Grey circles
represent learned features of the hypothesis. Arrows between
the representation of symbols indicate which parameter ma-
trix is being used: solid for W, dashed for U, dotted for V,
and bold solid grey for the score vector z. Note that matrix V
is used twice between symbols A and B, since B is present
in two ordering constraints under A (a→ B and B → c).

where the rooti are the root goal symbols of each of the t
parse trees in hypothesis η, and Q ∈ Rm×n and d ∈ Rn are
also parameters of the RNN.

4.2 Scoring and Ranking Hypotheses
As stated earlier, we cast the problem of identifying the cor-
rect hypotheses as multinomial logistic regression. Our re-
gression model works as follows.

First, for each hypothesis η in a set of candidates H , we
compute a score f by multiplying the feature vector repre-
sentation of the hypothesis by a score parameter vector z and
applying a sigmoid nonlinearity:

fθ(η) = sigm
(
z>hθ(η)

)
(3)

Then, we simply model the probability that η ∈ H is the
correct hypothesis as:

p(η | H) =
exp(fθ(η))∑

η′∈H exp(fθ(η′))
(4)

After training, these probabilities form the observee’s HTN
decision model and can be used to rank hypotheses.

Training is performed jointly over both the RNN parame-
ters θ and the score parameter vector z. Specifically, given a
training set consisting of pairs (H, y), where ηy ∈ H is the
correct hypothesis (see Section 5.1 for how training sets are
generated), we minimize the negative log-likelihood loss for
each training example:

l(fθ, H, y) = − log

[
exp(fθ(ηy))∑
η′∈H exp(fθ(η′))

]
(5)

The model does not currently include a regularizer term to
counter overfitting, but this does not appear to be an issue at
the moment (see Section 5).

We train the model with stochastic gradient descent
through backpropagation, a common method for training neu-
ral networks [Rumelhart et al., 1986]. The gradient of the loss

with respect to the score function of each hypothesis ηi ∈ H
is simply the following:

∇fθ(ηi)l(fθ, H, y) = −
(
1(i=y) − fθ(ηi)

)
(6)

The other gradients are straightforward to derive using the
chain rule. Before training the model, all parameters θ and
z are initialized with random values, save for bias vectors b
and d which are initialized to zeroes.

5 Evaluation
We implemented our algorithm in Python using the NumPy
library for efficient linear algebra operations, and compared
the ranking results on three domains against Yappr [Geib et
al., 2008] and the inverse planning approach of [Ramı́rez and
Geffner, 2010].

5.1 Datasets
We evaluated our algorithm on three synthetic benchmark do-
mains, each with different characteristics:
• Monroe plan corpus This domain consists of plan ses-

sions automatically generated by an AI planner in a dis-
aster management domain [Blaylock and Allen, 2005].
We slightly altered the original domain to remove left re-
cursion and epsilon productions in the grammar, as well
as action parameters. The resulting plan library has 30
action symbols, 43 goal symbols, 10 root goal symbols,
and 91 production rules.
• StarCraft navigation (SCN) This domain consists of

plans in the StarCraft real-time strategy game, for ex-
ample attacking an enemy base, or defending an allied
location1 [Kabanza et al., 2013]. The observed actions
correspond to groups of units moving around the game
map. The plan library has 58 action symbols, 134 goal
symbols, 7 root goal symbols, and 258 production rules.
• Kitchen This domain consists of activities of daily liv-

ing that take place in a kitchen, for instance making tea
and packing a lunch bag [Wu et al., 2007]. The observed
actions correspond to taking and using various objects of
the kitchen to perform the activities (e.g., taking a kettle
to make tea). The plan library has 25 action symbols,
16 goal symbols (all of them are also possible root goal
symbols), and 29 production rules.

For each domain, we generated sequences of observations
by randomly selecting the root goals the observee would take
as well as the actions it would take to accomplish said goals,
forming the ground truth. The sequences of observations as

1Although this is an adversarial setting, we can test simplified
scenarios in a non-interactive context by assuming that the observer
uses a plan recognizer to infer the goals of the observee on very short
horizons along which it can be reasonably expected that the observee
will not adjust its decisions. Decision adjustments on longer hori-
zons are somewhat implicitly accounted for by invoking the plan
recognizer after every new observation, causing a reevaluation of
the inferred goals. This of course only remains an approximation of
a plan recognition problem which should explicitly take into account
the interactions between the agents as some authors have attempted
to do, albeit with limited efficiency so far [Lisý et al., 2012].

well as the ground truth were already provided with the Mon-
roe plan corpus. We assumed uniform distributions to gener-
ate the SCN and Kitchen scenarios. The goals in the SCN do-
main are conjunctions of 3 randomly selected root goal sym-
bols (for a total of 343 possible combinations), and only one
root goal symbol in the Monroe and Kitchen domains.

We generated hypotheses consistent with the plan library
and prefixes of these sequences of observations, and labelled
them as correct or incorrect according to the ground truth.
We then randomly selected sets of incorrect hypotheses and
added the correct hypothesis to each set, forming ranking ex-
amples for our training, validation and test sets. Although all
correct and incorrect hypotheses are consistent with the plan
library, we could also envision different experiments involv-
ing incorrect hypotheses that are inconsistent with the plan
library. We expect that the RNN would still be able to learn
under these conditions. Such experiments are for future in-
vestigations. Table 1 gives the total number of hypotheses
used in each set for each of the three domains. The low num-
ber of hypotheses in the Kitchen domain is simply a product
of the plan library, which produces few hypotheses consistent
with any given sequence of observations.

Set Monroe SCN Kitchen
Training 50 275 70 900 13 263

Validation 17 225 23 125 4534
Test 17 100 21 850 4723

Table 1: Number of hypotheses in each dataset

We trained the RNN with several combinations of hyperpa-
rameter values for the number of features n, the learning rate
α, and the sigmoid or hyperbolic tangent (tanh) functions as
the g nonlinearity in Equations (1) and (2). We used early
stopping with a lookahead of 5 epochs to find the optimal
number of training epochs based on the classification error of
the validation set, measured as the ratio of incorrectly iden-
tified hypotheses. Table 2 reports the best combinations of
hyperparameters we found empirically as well as the result-
ing classification error on the test set.

Monroe SCN Kitchen
α 0.01 0.01 0.01
n 25 15 25
g tanh sigm tanh

Error 0.101 0.052 0.031

Table 2: Hyperparameter values and the classification error

Note that two hypotheses in the datasets could be labelled
differently since one could be the correct hypothesis in a sce-
nario but not in another, depending on context. Nevertheless,
the recursive neural network model managed to obtain a good
classification precision on the test set of each domain.

5.2 Ranking Experiment
We measured the rank of the observee’s goal in all three algo-
rithms. With the RNN and Yappr, we generated all hypothe-
ses consistent with the observations in a number of scenarios
(145 in the Monroe domain, 77 in the SCN domain, and 250

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

Scenario completion

Yappr
RNN

(a) Monroe plan corpus

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Scenario completion

R&G
Yappr
RNN

(b) StarCraft navigation

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.2 0.4 0.6 0.8 1

Scenario completion

R&G
Yappr
RNN

(c) Kitchen

Figure 4: Average rank of the correct goal by scenario completion on three selected domains

in the Kitchen domain). We then measured the rank of the
correct goal after each observation, where the score of a goal
is the maximum probability of all hypotheses with this exact
goal. The scenarios used in this experiment did not serve to
generate the datasets mentioned in the previous section. The
comparative results in each of the three domains are plotted
in Figure 4.

We can see from the graphs that the RNN performs best
on all three domains, with the smallest gap in the Kitchen
domain. We can expect this gap to grow larger with more
training data (see Table 1). We also assumed a uniform deci-
sion model to generate the SCN and Kitchen scenarios, which
explains why Yappr works well since it assumes a uniform
decision model by default. In future experiments, we will use
nonuniform decision models to generate scenarios to better
highlight the advantages of learning the model with an RNN
without making any prior assumptions2.

The shape of the RNN and Yappr curves on the SCN do-
main is symptomatic of the way the parser generates hypothe-
ses incrementally: the score (or probability) of the correct
goal will always be zero until there are 3 root symbols in the
hypothesis (forest of partial parse trees). R&G does not have
this problem, so it initially fares much better than the RNN
and Yappr, but falls short of the ranking accuracy we obtain
past the first 40% observations. R&G performs the least well
on the Kitchen domain, in part because it failed to find a plan
before the 5-minute timeout on several scenarios (other sce-
narios would only take a few milliseconds to find plans for).

We did not provide results for R&G on the Monroe domain
because a PDDL domain was not available. Although there
exist methods to translate HTNs into PDDL [Alford et al.,
2009], the modelling effort required to convert and optimize
the resulting PDDL domain is beyond the scope of this paper.

Note that we did not compare against DOPLAR [Kabanza
et al., 2013] because the only thing it improves over Yappr
is timeliness by limiting the number of generated hypothe-
ses. Although we do not report timeliness results in this
paper, scoring and ranking hypotheses with the RNN is not

2It is important to note that the probability distributions underly-
ing the HTN decision model are unique to Yappr and DOPLAR, and
have nothing to do with R&G. Only the probability distribution for
goal predictions have the same interpretation in both frameworks,
i.e., the probability of a goal given a sequence of observations.

computationally costly (see Equations (1)–(4)). We also did
not compare against the ranking approach of [Wiseman and
Shieber, 2014] simply because we would have had to man-
ually specify and develop structural features of hypotheses
modelled as parse forests, which is exactly what we set out to
avoid by learning the features automatically with an RNN.

6 Conclusion

In this paper we presented a recursive neural network model
that learns the HTN decision-making model of the observed
agent for plan recognition. Our model learns the feature vec-
tor representation of hypotheses as well as their score, which
are then used for ranking. We evaluated our approach on three
domains and compared it against Yappr and R&G, two ap-
proaches among state-of-the-art plan recognition algorithms,
and the results are very promising.

We intend to pursue investigating this approach by com-
paring it against other plan recognition algorithms, such as
those based on Markov logic [Song et al., 2013], and on
more complex scenarios in real-world domains. We believe
that our approach is general in that a recursive neural net-
work could learn other hierarchical representations than our
hypotheses, such as the abductive proofs of [Wiseman and
Shieber, 2014], or the hypotheses generated by the SBR algo-
rithm [Avrahami-Zilberbrand and Kaminka, 2005].

We will also investigate relaxing some of the assumptions
we have made, in particular the full observational capabili-
ties. Since we use the same hypothesis generation framework
as PHATT, Yappr and DOPLAR, we can use the extension
proposed by [Geib and Goldman, 2005] as a starting point,
although it is not scalable in practice. Finding better solu-
tions to deal with this problem is one of our objectives.

Acknowledgements

This work was supported by the Natural Science and Engi-
neering Research Council (NSERC) of Canada and the Fonds
de recherche du Québec – Nature et technologies (FRQNT).
We are grateful to the reviewers whose comments helped im-
prove the paper. We also thank Julien Filion for answering
questions on the DOPLAR algorithm.

References
[Alford et al., 2009] R. Alford, U. Kuter, and D. Nau. Trans-

lating HTNs to PDDL: A small amount of domain knowl-
edge can go a long way. In Proceedings of the 21st In-
ternational Conference on Artificial Intelligence (IJCAI),
pages 1629–1634, 2009.

[Avrahami-Zilberbrand and Kaminka, 2005] D. Avrahami-
Zilberbrand and G. A. Kaminka. Fast and complete
symbolic plan recognition. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence
(IJCAI), pages 653–658, 2005.

[Baker et al., 2009] C. L. Baker, R. Saxe, and J. B. Tenen-
baum. Action understanding as inverse planning. Cogni-
tion, 113:329–349, 2009.

[Blaylock and Allen, 2005] N. Blaylock and J. Allen. Gen-
erating artificial corpora for plan recognition. In L. Ardis-
sono, P. Brna, and A. Mitrovic, editors, User Modeling
2005, volume 3538 of Lecture Notes in Computer Science,
pages 179–188. Springer, July 2005.

[Charniak and Goldman, 1993] E. Charniak and R. P. Gold-
man. A bayesian model of plan recognition. Artificial
Intelligence, 64(1):53–79, November 1993.

[Geib and Goldman, 2005] C. W. Geib and R. P. Goldman.
Partial observability and probabilistic plan/goal recogni-
tion. In Proceedings of the IJCAI Workshop on Modeling
Others from Observations (MOO), 2005.

[Geib and Goldman, 2009] C. W. Geib and R. P. Goldman. A
probabilistic plan recognition algorithm based on plan tree
grammars. Artificial Intelligence, 117(11):1101–1132,
2009.

[Geib et al., 2008] C. W. Geib, J. Maraist, and R. P. Gold-
man. A new probabilistic plan recognition algorithm based
on string rewriting. In Proceedings of the 18th Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), pages 91–98, 2008.

[Kabanza et al., 2013] F. Kabanza, J. Filion, A. R. Be-
naskeur, and H. Irandoust. Controlling the hypothesis
space in probabilistic plan recognition. In Proceedings of
the 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI), 2013.

[Kautz and Allen, 1986] H. A. Kautz and J. F. Allen. Gener-
alized plan recognition. In Proceedings of the 5th National
Conference on Artificial Intelligence (AAAI), pages 32–37,
1986.

[Kott and McEneaney, 2006] A. Kott and W. M. McEneaney,
editors. Adversarial Reasoning: Computational Ap-
proaches to Reading The Opponent’s Mind. Chapman &
Hall/CRC, 2006.

[Lisý et al., 2012] V. Lisý, R. Pı́bil, J. Stiborek, B. Bošanský,
and M. Pěchouček. Game-theoretic approach to adversar-
ial plan recognition. In Proceedings of the 20th European
Conference on Artificial Intelligence (ECAI), pages 546–
551, 2012.

[Min et al., 2014] W. Min, E. Y. Ha, J. Rowe, B. Mott, and
J. Lester. Deep learning-based goal recognition in open-
ended digital games. In Proceedings of the 10th AAAI
Conference on Artificial Intelligence and Interactive Digi-
tal Entertainment (AIIDE), pages 37–43, 2014.

[Ramı́rez and Geffner, 2010] M. Ramı́rez and H. Geffner.
Probabilistic plan recognition using off-the-shelf classical
planners. In Proceedings of the 24th Conference on Artifi-
cial Intelligence (AAAI), pages 1121–1126, 2010.

[Ramı́rez and Geffner, 2011] M. Ramı́rez and H. Geffner.
Goal recognition over POMDPs: Inferring the intention of
a POMDP agent. In Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), pages
2009–2014, 2011.

[Rumelhart et al., 1986] D. E. Rumelhart, G. E. Hinton,
and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[Schmidt, 1976] C. F. Schmidt. Understanding human ac-
tion: Recognizing the plans and motives of other persons.
In J. S. Carroll and J. W. Payne, editors, Cognition and
Social Behavior, Carnegie-Mellon University Cognition,
pages 47–68. Lawrence Erlbaum Associates, 1976.

[Socher et al., 2011] R. Socher, C. C. Lin, A. Y. Ng, and
C. D. Manning. Parsing natural scenes and natural lan-
guage with recursive neural networks. In Proceedings of
the 26th International Conference on Machine Learning
(ICML), pages 129–136, 2011.

[Socher et al., 2014] R. Socher, A. Karpathy, Q. V. Le, C. D.
Manning, and A. Y. Ng. Grounded compositional se-
mantics for finding and describing images with sentences.
Transactions of the Association for Computational Lin-
guistics, 2:207–218, 2014.

[Sohrabi et al., 2011] S. Sohrabi, J. A. Baier, and S. A. McIl-
raith. Preferred explanations: Theory and generation via
planning. In Proceedings of the 25th Conference on Arti-
ficial Intelligence (AAAI), pages 261–267, 2011.

[Song et al., 2013] Y. C. Song, H. Kautz, J. Allen, M. Swift,
Y. Li, J. Luo, and C. Zhang. A Markov logic framework
for recognizing complex events from multimodal data. In
Proceedings of the 15th ACM International Conference on
Multimodal Interaction (ICMI), 2013.

[Sukthankar and Sycara, 2005] G. Sukthankar and
K. Sycara. A cost minimization approach to human
behavior recognition. In Proceedings of the 4th Inter-
national Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 1067–1074, 2005.

[Wiseman and Shieber, 2014] S. Wiseman and S. Shieber.
Discriminatively reranking abductive proofs for plan
recognition. In Proceedings of the 24th International Con-
ference on Automated Planning and Scheduling (ICAPS),
2014.

[Wu et al., 2007] J. Wu, A. Osuntogun, T. Choudhury,
M. Philipose, and J. M. Rehg. A scalable approach to
activity recognition based on object use. In Proceedings
of the 11th International Conference on Computer Vision
(ICCV), 2007.

