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Abstract
The ability to understand the goals and plans of
other agents is an important characteristic of intel-
ligent behaviours in many contexts. One of the ap-
proaches used to endow agents with this capability
is the weighted model counting approach. Given
a plan library and a sequence of observations, this
approach exhaustively enumerates plan execution
models that are consistent with the observed be-
haviour. The probability that the agent might be
pursuing a particular goal is then computed as a
proportion of plan execution models satisfying the
goal. The approach allows to recognize multiple
interleaved plans, but suffers from a combinatorial
explosion of plan execution models, which impedes
its application to real-world domains. This paper
presents a heuristic weighted model counting algo-
rithm that limits the number of generated plan ex-
ecution models in order to recognize goals quickly
by computing their lower and upper bound likeli-
hoods.

1 Introduction
The ability to understand the goals or plans underlying the
behaviours of an observed agent, also known as plan recogni-
tion, is an important characteristic of intelligent behaviours. It
is central for achieving situation awareness in many contexts,
including understanding the intent of other agents we interact
with. Examples of applications include user modelling [Lesh
et al., 1999; Conati and VanLehn, 1996], assistive technolo-
gies [Demeester et al., 2008; Kautz et al., 2003], malicious
activity detection [Geib and Goldman, 2009; Jarvis et al.,
2004], and opponent intent recognition in video games [Syn-
naeve and Bessière, 2011].

One of the main plan recognition paradigms, commonly
referred to as a plan-library based approach, is to assume
that the observing agent is given a plan library describing
the expected behaviours of the observed agent. The plan
recognition problem is thus reduced to inferring both goals

and plans from the plan library that explain the observed
behaviour. Approaches of this kind mainly differ on their
plan representation formalisms and their inference theories
and techniques. Examples include approaches based on Hier-
archical Task Networks (HTN) [Geib and Goldman, 2009;
Avrahami-Zilberbrand and Kaminka, 2005], probabilistic
grammars [Pynadath and Wellman, 2000], Bayesian net-
works [Synnaeve and Bessière, 2011], Hidden Markov Mod-
els [Bui et al., 2002], and Markov logic [Sadilek and Kautz,
2010].

Goals and plans can be inferred from observations and a
plan library by generating or counting an exhaustive set of
mutually exclusive models of plan execution that are consis-
tent with the observed behaviour. The probability of a given
goal can then be computed as a proportion of models satisfy-
ing the goal; in other words, based on the weight of the model.
Such an explicit plan execution model facilitates the handling
of interleaved plans or plans geared towards achieving multi-
ple goals [Geib et al., 2008; Geib and Goldman, 2009]. How-
ever, this approach results in a combinatorial explosion of the
goal and plan hypothesis space, which is intractable for most
real-world applications.

Domain-specific knowledge could be used to prune or
prioritize the hypothesis space in plan-library based ap-
proaches [Sukthankar and Sycara, 2008]. In this paper, we
approach the problem from a different but complementary an-
gle. We trade the slow computation of exact goal hypothesis
probabilities against a quick computation of lower and upper
bounds of goal hypothesis probabilities. As the computation
of bounding intervals only requires a partial enumeration of
plan execution models, our algorithm is able to provide early
assessments of the observed agent’s goals much faster than a
standard model counting algorithm. The goal probability in-
tervals shrink as processing time increases, and converge to
the exact goal probability values. This is particularly useful
when an agent needs to recognize the behaviours of another
agent within deadlines. For example, an agent may be inter-
ested in reacting only to the goals of another agent provided
that they have a probability above a given threshold. In such a
case, our algorithm will provide a result as soon as the bounds



cross this threshold.
In the next section, we discuss the syntax and interpretation

of plan libraries. From that point, we explain the basics of a
standard weighted model counting approach. This is mostly
background from [Geib and Goldman, 2009], but we formu-
late it differently for a concise, but nevertheless precise de-
scription. We then explain the controlled generation of plan
execution models. Finally, we discuss experiments and con-
clude with brief remarks.

2 Plan Library
A plan library is specified as a partially-ordered multiset
context-free grammar (pomset CFG) [Nederhof et al., 2003].

2.1 Syntax
Definition 1. A plan library is a tuple L = 〈A,G, I,R〉,
where A is a finite set of action symbols (terminals), G is a
finite set of goal symbols (non terminals), I ⊆ G is a set of in-
tendable goal symbols, and R is a set of goal-decomposition
rules (production rules) of the form g → τ , where:

• g ∈ G;

• τ is a partially ordered string over the alphabet (A∪G),
represented as a pair [β,C], where:

– β ∈ (A ∪ G)∗ is a string of goal and action sym-
bols;

– C is a set of ordering constraints of the form (i, j),
meaning that the ith symbol of β must precede the
jth symbol of β.

A rule g → [Y0, . . . , YN , C] means that the goal g can be
accomplished by achieving or executing each of the Yi in any
order consistent with constraints C. A set of rules with a
common left-hand side g represents alternative choices for
accomplishing goal g. The specification of a plan library also
supports the use of preconditions and parameters for produc-
tion rules and actions. However, for the sake of conciseness,
we will not use them in this paper. A pomset CFG augmented
with preconditions and parameters is equivalent to traditional
HTNs used in planning [Ghallab et al., 2004].

As an example, Figure 1 illustrates a plan library that
is graphically displayed as an AND-OR tree. AND-nodes
have an arc across the lines to their children, while OR-
nodes do not have such an arc. The actions are leaf nodes
and the goals are interior nodes. Each rule of the form
g → [Y0, ..., YN , C] is represented as an AND-node g along
with children Y0, . . . , YN , such that an arrow from Yi to Yj
accounts for a constraint (i, j) in C. A set of rules with a
common left-hand side, g → [β0, C0], . . . , g → [βN , CN ],
corresponds to an OR-Node g along with children groups
β0, . . . , βN , where the children in βi are linked according to
Ci.

This example illustrates a plan library for the StarCraft
real-time strategy (RTS) game. The example is partial and ex-
tremely simplified for illustration purposes. StarCraft players
often follow rules of thumb, particularly during the opening
phase. We can specify such rules in a plan library used by a
game AI to recognize its opponent’s goals and plans. Figure 1
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Figure 1: A simplified plan library for the StarCraft game

illustrates rules of thumb for a player progressing on a terrain
divided into four regions, which are his own base, R1 (neu-
tral), R2 (neutral) and R3 (opponent’s base). The Expand rule
is a recipe for expanding the player’s territory by taking con-
trol of an additional region. The Explore rule is for gathering
intelligence information from the environment. The Attack
rule is for destroying the opposing force. Note that by exe-
cuting strategic and tactical actions to play the game, players
will influence each other’s behaviour. Their plans can also
involve actions that achieve deceptive behaviours. However,
our algorithm does not address mutual influences or detect
deception. These are topics for future investigation.

2.2 Interpretation
We assume that the observed agent behaves by planning and
then executing planned actions. He proceeds by first choos-
ing a goal that is a conjunction of intendable goals, gener-
ates a plan achieving the goal, and then executes the plan.
We also assume that the observing agent has a plan library
L = 〈A,G, I,R〉 conveying the expected behaviours of the
observed agent. We further assume there are no conflicting
interdependencies between intendable goals1.

Under these assumptions, planning for a conjunctive goal
amounts to choosing a set of production rules in the plan li-
brary that recursively expand each conjunct down into an ac-
tion plan. The chosen rules for each conjunct form a complete
derivation tree and the frontier of the tree is a partially ordered
multiset of actions, that is, a plan [α,C], where α is the set
of grammar symbols labelling the frontier, and C is a par-
tial order progressed from rules used in the tree down to the
frontier. The plan for the conjunctive goal is the frontier of
the forest composed of trees. Specifically, if [αi, Ci] are the
plans of trees ti for the conjuncts, the forest’s plan is [α′, C ′],
where α′ is the union of the αi and C ′ is the union of the Ci.
A complete derivation tree (or forest) has a frontier that con-
sists only of action symbols, representing a complete plan for
achieving the tree’s root goal (or forest’s conjunctive goal).
A partial derivation tree (or forest) has a frontier made of ac-
tion and goal symbols, that is, a partial plan for achieving the
tree’s root goal (or forest’s conjunctive goal).

1Handling conflicts in a conjunctive goal is a difficult problem
for plan-library based approaches. A workaround is to replace a
conflicting conjunctive goal by a single intendable goal, while en-
suring that the corresponding production rules resolve the conflict.



Figure 2 illustrates partial derivation forests for the plan
library in Figure 1. Nodes are labelled either with goals or
actions. A goal node g with children Y0, . . . , YN means that
the rule g → [Y0, . . . , YN , C] was chosen to achieve g, with
C reflected by the links between the children. We will revisit
this figure later when discussing the generation of goal and
plan hypotheses.
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Figure 2: Examples of partial derivation forests

3 Basic Hypotheses Generation Algorithm
We assume the actions are observable—an assumption that
can be relaxed as discussed in [Geib and Goldman, 2005],
although at the expense of an additional exponential blow up
in the hypothesis space. Thus, if an agent executes a plan in a
library L = 〈A,G, I,R〉, then every sequence σ of observed
actions is a prefix of a sequence of actions that is a particular
ordering of a plan derived from a conjunctive goal. Ergo, we
define a hypothesis for a sequence of observations σ as the
goal and plan of a minimal derivation forest, such that the
sequence of observations is a prefix of a total ordering of the
plan.

Earlier complexity analysis of a plan-library based plan
recognition approach suggests that the generation of hypothe-
ses that explain a sequence of observations is at least an NP-
hard problem [Vilain, 1991]. A bottom-up approach, while
more complicated, is on average more efficient than a top-
down approach because it only generates hypotheses that are
relevant to the observations. It proceeds by simulating the
execution of an exhaustive set of mutually exclusive hypothe-
ses, in synchrony with the sequence of observations (σ). This
is done by generating a tree of hypotheses, as illustrated in
Figure 3. The two circled frontiers illustrate breadth-first and
controlled exploration strategies. At this point, we discuss the
breadth-first strategy.

For a sequence of observations σ, let us note σi the obser-
vation in position i and σ[i:j] the subsequence of observations
from position i to j. Each hypothesis at level i + 1 is an ex-
planation for σ[0:i]. The root node in the hypothesis tree is the

empty hypothesis. The children hc of a hypothesis hp at level
i are generated by taking into account all possible ways of
explaining σi, from hp. To understand how this is done, first
note that each tree in a hypothesis has a multiset of enabled
actions, that is, the multiset of actions having no precedence
constraint in the tree’s plan. We refer to this multiset as the
pending set of the plan or, by extension, the pending set of
the tree. These are actions pending execution by the observed
agent assuming he is committed to the plan. A pending set
for a hypothesis is the union of pending sets of the trees com-
posing it.
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Figure 3: Illustration of a tree of hypotheses

Now, the procedure for expanding a hypothesis hp into its
children hc, given the observation σi, is as follows:

(a) Consider all possible ways of choosing and then execut-
ing an action of hp’s pending set; each such possibility
gives rise to a chid hc. Specifically, for each tree t in hp,
if σi is in t’s pending set, generate a child hc differing
from hp by the fact that the action σi is trimmed from t.

(b) Check whether σi could be the start of a new goal’s
execution—that is, check whether σi could be a leftmost
symbol of a plan for a new goal. For each such tree t,
generate a child hc from hp by adding t with the action
σi trimmed off.

Figure 2 illustrates the expansions of hypotheses into some
of their children. Note that step (a) requires performing a left-
most derivation of hp deep enough to derive its pending set.
To efficiently check the membership of an action in a pend-
ing set, a bookkeeping optimization is to precompute actions
that come first in a leftmost derivation of a plan for any goal.
The actions that come first in a leftmost derivation of a plan
for a given goal form the First multiset for the goal (for a
goal g, we denote this by First(g)). This is a generalization
to pomset CFG of a First set in traditional CFG top-down
parsing [Sudkamp, 2006]2. Note that only the frontier of the
hypothesis tree is kept in memory.

4 Computing Exact Goal Probabilities
The probability of a hypothesis and a sequence of observa-
tions (noted P (h ∧ σ)) measures the likelihood that an agent
decides to execute h’s plan following an action interleaving

2Each element of a First multiset corresponds to the concept of
a foot for derivation trees in [Geib et al., 2008].



that matches σ. This probability can be used to compute the
probability of a goal given the observations (noted P (g | σ)),
the probability of a plan given the observation, or the prob-
ability of a behaviour (set of plans) given the observations.
Here we only show how to compute P (g | σ). Using Bayes’
rule, we can write:

P (g | σ) = P (σ | g)P (g)/P (σ)
= P (g ∧ σ)/P (σ) (1)

Let us note Hσ the exhaustive set of mutually exclusive
hypotheses for the sequence of observations to date, σ, and
roots(h) the intendable goals of hypothesis h. We can re-
write the previous equation as:

P (g | σ) =

∑
h∈Hσ|g∈roots(h)

P (h ∧ σ)

∑
h∈Hσ

P (h ∧ σ)
(2)

To compute P (h ∧ σ), we need prior probability that the
observed agent will commit to a set of intendable goals,
P (goals), the goal commitment model. We also need the
probability that he will choose a particular rule to achieve
a goal, that is, P (rule | g), the planning model. Finally,
we need the probability that he will execute an action given
the current pending set, that is, P (action | PendingSet),
the interleaving model. These distributions could be learned
from a domain. By default, we assume that the agent se-
lects identical goal instances by following a geometric dis-
tribution. The probability of choosing the same goal is thus
independent from the goals already selected. In other words,
P (goals) =

∏
g∈I P (g)

N (1− P (g)), where N is the num-
ber of instances of g in goals and P (g), given as input, is the
a priori probability that an agent follows goal g at least once.
For P (rule | g), we assume a uniform choice distribution
among applicable rules. For P (action | PendingSet), we
also assume a uniform choice distribution among enabled ac-
tions. As noted by [Geib and Goldman, 2009], these default
distributions can be surprisingly effective in practice.

Let us note rules(h) the set of rules appearing in h and
lhs(r) the left-hand side of rule r. It can be shown [Geib and
Goldman, 2009] that:

P (h ∧ σ) =

K
∏

g∈roots(h)

P (g)
∏

r∈rules(h)

P (r | lhs(r))
n∏
i=0

P (σi | PS(h, σ, i))
(3)

whereK =
∏
g∈I (1− P (g)) is the probability that an agent

will not pursue more goals than he has already committed to,
and PS(h, σ, i) is the pending set of h’s plan after executing
the first i actions of σ.

Current model counting algorithms, notably YAPPR [Geib
et al., 2008] and PHATT [Geib and Goldman, 2009], enu-
merate all the hypotheses to compute the probability of a goal
given the observations to date. Given the sequence of obser-
vations to date, σ[0:i], level i+ 1 of the hypothesis tree is en-
tirely generated (see Figure 3), and Equation (2) is applied to

obtain goal probabilities. However, this exhaustive enumera-
tion of plan execution models quickly becomes intractable.

5 Controlling the Generation of Hypotheses
In many applications, plan recognition is involved to enhance
the understanding of a situation in order to decide how to re-
act. In such cases, an agent may decide to react to another
agent’s goal or plan, based on whether or not the assessed
probability of the goal or plan is above a certain threshold.
For example, the game AI in an RTS game could decide to
defend an asset or not, depending on whether or not the prob-
ability of an attack against the asset is above some threshold.
In that case, instead of assessing the exact probability or ex-
pected utility of goals, it is sufficient to compute lower and
upper bounds for goal probabilities. If the lower bound is
above the threshold, the goal is worthy of attention. If the
upper bound is below the threshold, the goal is not worth
consideration.3 At this point, we explain how to compute
goal-probability bounds.

Interestingly, goal-probability bounds can be computed
more efficiently than exact probabilities, without exhaustively
enumerating all hypotheses. That is, by not fully expanding
hypotheses to match the sequence of observations, we lose
the ability to compute P (g | σ) precisely, but we can still
estimate its lower and upper bounds. This idea is behind
our new algorithm, the Decision-Oriented PLAn Recognizer,
or DOPLAR. This algorithm expands the hypothesis tree by
picking, each time, the hypothesis that weighs most in the
computation of P (g | σ). The contribution of a hypothesis h
to P (g | σ) is measured by P (h ∧ σ), therefore the hypoth-
esis that has the highest value P (h ∧ σ) is always selected
for the next expansion. This results in an unevenly expanded
hypothesis tree, as illustrated in Figure 3.

To explain how the lower and upper bounds for P (g | σ)
are calculated, we need to introduce the notion of a weight
for a hypothesis. For an unevenly expanded hypothesis tree,
let us note F the set of hypotheses on the frontier of the tree.
For a sequence of observations σ and hypothesis h, let us
also note DH(h, σ) all the descendants of h down to level
|σ| of the hypothesis tree; in other words, the descendants
of h that explain the sequence σ. If h is at level |σ|, then
DH(h, σ) ≡ {h}. We define the weight of a hypothesis h
with respect to a sequence of observations σ as follows:

weight(h, σ) =
∑

hi∈DH(h,σ)

P (hi ∧ σ) (4)

An exact calculation of the weight of h requires that all of
its descendants be generated down to level |σ|. Given that
the principle of DOPLAR is to avoid an exhaustive explo-
ration, it instead computes the lower and upper bounds of
weight(h, σ) based on h, not its descendants. If a hypoth-
esis h is at level |σ| (i.e., h explains σ), then its weight(h, σ)
is precisely P (h∧σ). Thus, both lower and upper bounds are
equal to P (h ∧ σ). The most interesting case is when h is at

3More generally, agents may react to goals based on the expected
utility thresholds instead of probability thresholds. It would not be
difficult to compute goal-utility bounds in our approach.



a level strictly less than |σ|. For this case, the lower bound
is 0, because DH(h, σ) might be empty. The upper bound is
given by the following lemma.
Lemma 1. For a hypothesis h explaining σ[0:i],
with i ≤ n, weight(h, σ[0:n]) is bounded above by
ub(weight(h, σ[0:n])), where:

ub(weight(h, σ[0:n])) = P (h ∧ σ[0:i])

n∏
k=i+1

(1 +
∑

g∈I|σk∈First(g)

P (g)) (5)

A proof sketch for this lemma is as follows. First con-
sider the basic case, i = n − 1, that is, when the hypothe-
sis is one observation away from explaining σ. In order to
define an upper bound on weight(h, σ[0:n]), we must con-
sider the two steps used to expand a hypothesis (Section 3).
When expanding h using elements of the pending set (step
a), it can be shown that, if all potential expansions (hpe) of h
match the sequence σ, then P (h ∧ σ[0:i]) =

∑
hpe

P (hpe ∧
σ). However, some of the children might not match the
next observation, therefore the contribution of those hypothe-
ses to weight(h, σ[0,n]) will be at most P (h ∧ σ[0:i]) or
weight(h, σ[0:i]). Similarly, when expanding h by incor-
porating new goals (step b), it can be shown that, for each
intendable goal g, the sum of P (hc ∧ σ) over all the chil-
dren hc of h generated to account for g will not exceed
P (h ∧ σ[0:i])P (g). Furthermore, a goal g for which σi+1

is not an element of First(g) will not produce any children
for h and can be ignored for this step. This reasoning can be
repeated inductively to obtain Lemma 1.

For a working hypothesis set F (i.e., the frontier of the
hypothesis tree explored by DOPLAR), let us note T (F ) the
set of all fully expanded or terminal hypotheses in F , in other
words, the hypotheses at level |σ|. We also note NT (F ) the
set of partially expanded or non-terminal hypotheses in F .
Theorem 1. Given a working set F over the sequence σ, we
have the following lower bound on the posterior probability
of a goal g:

P (g | σ) ≥

∑
h∈T (F )|g∈roots(h)

P (h ∧ σ)

∑
h∈F

ub(weight(h, σ))
(6)

A proof of this theorem hinges on the observation that, for
a working set F over the sequence σ and a goal g, P (g | σ)
will be at its minimum value when P (σ) is maximized and
for each hypothesis hi in NT (F ), DH(hi, σ) contains no
hypothesis having a tree rooted on g. Indeed, in such a case,
P (g ∧ σ) is the sum of the weight of all hypotheses in T (F )
that are rooted on g. Furthermore, using Lemma 1, P (σ)
can be overestimated by summing ub(weight(hi, σ)) for all
hi ∈ F .
Theorem 2. Given a working set F over the sequence σ, the
posterior probability of a goal g is bounded above as follows:

P (g | σ) ≤

∑
h∈T (F )|g∈roots(h)

P (h ∧ σ) +
∑

h∈NT (F )

ub(weight(h, σ))

∑
h∈F

ub(weight(h, σ))
(7)

This theorem follows from the observation that P (g | σ)
will be at its maximum value when, for each hypothesis hi in
NT (F ), the set DH(hi, σ) contains only hypotheses where
the observed agent has g as one of his goals, and where
weight(hi, σ) is maximized. Using Lemma 1, we can over-
estimate the contribution of a partial hypothesis hi to P (g∧σ)
with ub(weight(hi, σ)). P (g ∧ σ) can then be overestimated
by the sum of ub(weight(hi, σ)) for each hi ∈ T (F ) and of
the weight of all hypotheses in T (F ) that have a plan for g.
In such a case, P (σ) is at least the sum of ub(weight(hi, σ))
for each hi in F .

6 Experiments
We implemented DOPLAR in Common Lisp as an extension
to YAPPR, a weighted model counting based plan recognizer
that uses an HTN plan representation [Geib et al., 2008]. We
tested both algorithms on artificial and simple StarCraft plan
libraries, using GNU CLISP 2.48 on a quad-core Intel Core 2
Q8200 (2.33GHz) processor, running Windows 7. The tests
were aimed at verifying the time and space taken by DO-
PLAR to recognize goals, using YAPPR as a baseline. We
tested DOPLAR’s two different stopping criteria: probability
threshold (threshold), or error on the probability’s uncertainty
(error), which is the difference between the upper and lower
bounds.

The artificial plan libraries were randomly generated by
considering a number of plan library features that contribute
to the explosion of the hypothesis space: the number of in-
tendable goals, the nesting level of grammar rules (depth),
the length of the right-hand side of grammar rules (branch-
ing factor), the number of rules sharing a left-hand side (OR-
choice), the partial ordering constraints on the right-hand side
of rules (constraints), and the number of actions. The gram-
mar structure of the plan libraries is best explained by con-
sidering its AND-OR tree representation. The level of the
AND-OR tree alternates between AND-nodes and OR-nodes,
with the number of intendable goals set to 10, the depth to 4,
the branching factor to 3, the OR-choice to 2, and with 100
unique actions. For each test, a plan library was generated
with the structure just described, with terminal symbols ran-
domly chosen among the 100 actions and the ordering con-
straint for each rule chosen randomly (an ordering constraint
has a 33% chance of being added between any pair of sym-
bols on the right-hand side of a rule). A sequence of obser-
vations derivable from an intendable goal was then randomly
generated. Finally, the plan library and the sequence of ob-
servations were used as input for DOPLAR and YAPPR.

Figure 4 shows the results of the experiments for a se-
quence of 9 observations. The CPU times and number of
hypotheses are plotted on a logarithmic scale. For each ob-
servation, the plotted y-value is the average over 100 tests,
each involving a randomly chosen library and observation se-
quence. In Figure 4(a), DOPLAR computes goal-probability
bounds up to the indicated threshold. Figure 4(b) shows the
corresponding number of generated hypotheses. DOPLAR
always performs significantly better than YAPPR except for
the initial observation where DOPLAR’s overhead outweighs
the expansion of the initial empty hypothesis. The more ob-
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Figure 4: Comparison of DOPLAR and YAPPR. The x-axis is the sequence of observations (i is the ith observation of the
sequence). For each observation, the value (y-axis) is an average over 100 tests. The y-axis is plotted on a logarithmic scale.

servations, the larger the set of hypotheses, and the better the
performance of DOPLAR compares to that of YAPPR. As-
suming that an agent reacts to the goals of another agent de-
pending on whether their probability is above a given thresh-
old, it would be able to react much faster if it were using
DOPLAR rather than YAPPR.

Figures 4(c) and 4(d) compare YAPPR to DOPLAR for
errors on the uncertainty of goal probability computed by
DOPLAR. The figures show that the exploration space can
be efficiently controlled by tolerating some precision error
on the goal probability using DOPLAR rather than trying to
reach an exact probability using YAPPR. If DOPLAR is set
to exhaustively generate all hypotheses (i.e., an error of 0), it
generates the same hypotheses as YAPPR. However, as Fig-
ure 4(c) shows, the CPU time of YAPPR is slightly lower than
DOPLAR’s because of the overhead incurred by maintaining
lower and upper goal-probability bounds. With much more
complex plan libraries (obtained by increasing one of the ran-
dom plan library generation parameters), YAPPR could not
return any result in situations where DOPLAR was able to
compute goal-probability bounds for different error values.

Tests on simplified plan libraries for the StarCraft domain
produced results similar to those of the artificial domain.

7 Conclusion
We have introduced an anytime plan recognition algorithm
based on weighted model counting. As for any other plan-
library based approach, the learning of plan libraries would
be a significant complement to this approach.

Previous extensions to the standard weighted model count-
ing approach to handle temporal constraints [Geib and Gold-
man, 2009] and goal abandonment [Geib and Goldman,
2003] remain compatible with our approach. The method
handling of unobserved actions suggested in [Geib and Gold-
man, 2005] would also be applicable to our approach, albeit
it is intractable in practice.

Future work will aim for more complex plan libraries
for StarCraft and comparison between our approach and ap-
proaches that do not require plan libraries, but rather rely only
on primitive actions, such as [Lisỳ et al., 2012; Ramı́rez and
Geffner, 2010].
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